ОТЗЫВ

официального оппонента, доктора технических наук, доцента Уляшевой Веры Михайловны на диссертационную работу **Чернякова Евгения Вадимовича** «Повышение энергоэффективности систем подготовки и распределения воздуха чистых помещений», представленную на соискание ученой степени кандидата технических наук по специальности 05.23.03 — Теплоснабжение, вентиляция, кондиционирование воздуха, газоснабжение и освещение

Диссертационная работа состоит из введения, 6-ти глав и общих выводов, содержит 165 страниц машинописного текста, в том числе 55 рисунков, 15 таблиц и 5 приложений. Библиография включает 114 наименований работ отечественных и зарубежных авторов.

Актуальность темы

Диссертация посвящена разработке энергоэффективных систем вентиляции и кондиционирования воздуха для помещений с наиболее высокими требованиями к параметрам воздушной среды. Во многих отраслях производства в настоящее время происходит качественное изменение технологических процессов, связанное с повышением уровня промышленной чистоты объектов. Эта тенденция сопровождается значительными капитальными и эксплуатационными затратами, в частности увеличением затрат на системы вентиляции и кондиционирования воздуха. В некоторых случаях эти затраты становятся соизмеримы с затратами на производство продукции. Таким образом, исследования в области совершенствования обеспечения систем микроклимата чистых помещений являются актуальными.

Краткое содержание работы

В основу работы заложены экспериментально-аналитические исследования, всесторонне характеризующие проблему для оценки достоверности окончательных выводов, полученных путем комплексных теоретических, лабораторных и натурных исследований процессов тепловоздухообмена, включая построение численных моделей. Проведено обобщение и классификация полученных результатов и их сопоставление с имеющимися данными других отечественных и зарубежных исследователей.

Во введении обосновывается актуальность выбранной темы исследований; определяются цель и задачи исследований; обозначаются объект и предмет исследований; излагаются основные положения научной

новизны, теоретическая и практическая значимость результатов; приводятся сведения об апробации работы и публикациях.

Проведенный в первой главе детальный анализ научных и технических достижений в области создания и поддержания нормируемых условий воздушной среды в чистых помещениях показал, что наибольшее распространение получили системы кондиционирования, основанные на применении рециркуляции воздуха. Однако в чистых помещениях при работе веществами, представляющими опасность химического бактериологического загрязнения, такие системы во многих случаях недопустимы. Одновременно указывается, что прямоточные системы требуют значительных эксплуатационных затрат, что обуславливает своевременность исследований, связанных C повышением энергоэффективности прямоточных систем кондиционирования воздуха. Важным является обзор работ отечественных и зарубежных авторов, посвященных организации воздухообмена в чистых помещениях. Автором достаточно корректно обоснованы достоинства и недостатки известных систем подготовки и распределения воздуха в чистых помещениях, на основании чего выявлена необходимость дальнейших исследований для совершенствования принципов организации воздушного режима в рассматриваемых помещениях.

второй главе представлены предложенные автором энергоэффективные схемы установок кондиционирования воздуха (УКВ) для теплого и холодного периодов года, отличающиеся включением стандартных УКВ теплообменников единый гидравлический контур парокомпрессионной холодильной машины. Приведена инженерная методика расчета основных показателей авторской схемы. Детально проанализированы достоинства и недостатки предлагаемой автором схемы установки кондиционирования в сравнении с техническими решениями на основе аппаратов утилизации теплоты и переохлаждения хладагента. В настоящее время заявка автора на выдачу патента на изобретение находится в стадии экспертизы по существу.

В третьей главе представлен анализ численных методов расчета турбулентных течений и целесообразности применения современных методов вычислительной гидродинамики для расчета воздухораспределения в чистых помещениях. На основании подробного анализа моделей

23

турбулентности обосновано использование для расчета воздушного режима в чистых помещениях двухпараметрической модели турбулентности k- ε .

В четвертой главе автором проведены численные исследования для установления связи скорости движения воздуха и перемещения аэрозольных частиц. В работе использованы программные комплексы Ansys ICEM-CFD, Ansys GAMBIT и Ansys FLUENT. Созданная математическая модель чистого помещения соответствует реальным объектам - лаборатории наноцентра Венского технического университета (ZMNS - TUW), чистым помещениям Гонконгского университета науки и технологии (NFF - HKUST) и Швейцарской высшей технической школе Цюриха (FIRST - ETH Zurich), экспериментальному чистому помещению компании Cleanroom Technology Austria GMbH, в которых автор участвовал в проведении исследований. Учитывая особенности влияния перемещения оператора на состояние воздушной среды, автором предложено выделить 6 характерных зон, для которых созданы отдельные расчетные сетки с использованием метода граничной коррекции. Для создания динамической сетки автором разработана специальная функция, описывающая характер движений оператора. Данные о поступлении индикаторных аэрозольных частицах вводятся специальными файлами. Результаты численного моделирования позволили выявить характер влияния аэродинамического режима чистого помещения на эффективность удаления индикаторных частиц.

В пятой главе обоснованность результатов, выдвинутых автором в рамках численного моделирования, доказана сопоставлением с данными натурного эксперимента, проведенного в экспериментальном чистом помещении. Для имитации движений оператора использован механический манекен. Достоверность экспериментальных данных обеспечена использованием современных средств и методик проведения исследований. Приведена подробная методика обработки результатов измерений. Следует особо отметить сложность, в первую очередь в организационном плане, проведенных автором натурных исследований аэродинамики чистого помещения.

В шестой главе экономически обосновано применение предложенной автором схемы кондиционирования. Оценены экономические показатели оптимизации скорости приточного воздуха.

Заканчивая общий анализ диссертационной работы, можно отметить, что по содержанию, объему теоретических, лабораторных и натурных

исследований, по актуальности поставленных и решенных новых инженерных задач, по достоверности полученных результатов она является законченным квалификационным научным исследованием. Все поставленные задачи исследований решены и обоснованы в полном объеме.

Степень обоснованности научных положений, выводов и рекомендаций

Обоснованность научных положений, выводов и рекомендаций подтверждена тем, что в диссертации использованы общепринятые современные научные подходы к математическому моделированию процессов тепло-воздухообмена в помещениях; для разработки численной данные собственных модели использованы первичных натурных исследований и опытных данных других авторов; экспериментальные исследования выполнены с применением современных средств измерений, а также апробацией и практическим использованием предложенной автором схемы энергоэкономичной прямоточной установки подготовки воздуха для чистых помещений при работе с веществами, представляющими опасность химического и биологического загрязнения.

Достоверность и новизна научных положений, выводов и рекомендаций

Достоверность проведенных исследований подтверждена принятыми автором достаточно надежными и проверенными методиками. Проведенные испытания выполнены с помощью приборной базы Венского технического университета и Гонконгского университета науки, а полученные результаты, в основном, не вызывают сомнений в их достоверности. На основании реализации средствами вычислительной (CFD) гидродинамики разработанной автором численной модели чистого помещения получены новые результаты, отражающие влияние скорости распределения приточного воздуха и характера движения оператора на перенос аэрозольных загрязнителей и время стабилизации воздушного потока в исследуемом помещении. Научно обоснована и предложена новая аналитическая зависимость между скоростью воздушного потока и временем его стабилизации в чистом помещении. Разработана принципиально новая схема энергоэкономичной прямоточной установки подготовки воздуха для чистых помещений, включающая тепловой насос с возможностью регулирования тепло-холодопроизводительности теплообменников.

23.

Значимость для практики результатов диссертационной работы

Результаты исследований могут быть использованы при разработке соответствующих стандартов качества воздушной среды чистых помещений. Предложены и реализованы на практике энергоэффективные мероприятия по совершенствованию систем кондиционирования воздуха, предназначенных для чистых помещений.

Соответствие диссертации и автореферата

Содержание автореферата соответствует тексту диссертационной работы и является ее кратким изложением. Объем диссертационной работы достаточен. Диссертация написана в логической последовательности четким, технически грамотным языком.

Личный вклад соискателя

Автором обобщены и систематизированы результаты теоретических и экспериментальных исследований; разработана и апробирована предложенная численная модель чистого помещения; самостоятельно разработана новая схема установки кондиционирования воздуха.

Публикации

Основное содержание диссертационной работы достаточно полно отражено в 10 опубликованных работах, 2 из которых опубликованы в научных изданиях, рекомендованных ВАК РФ, а также 1 публикация, включенная в базу цитирования Scopus; доложено на заседаниях научнотехнических конференций различного уровня. Диссертационная работа является завершенной и содержит все основные разделы.

Замечания по диссертации и автореферату:

- 1. Таблица 2.1 не обоснован выбор нормативного документа СанПиН 2.1.13.1375-03 (Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров) и категории тяжести работ Па.
- 2. Расчет по формуле 2.1 неясно, чему равна скорость. Неясно, каким образом определены остальные теплопоступления. С какой целью определены влагопоступления? Поскольку на рис.2.3 и 2.4 не показаны процессы изменения состояния воздуха в помещении, неясно, каким образом будет обеспечена в рабочей зоне относительная влажность 45%.
- 3. Глава 5 и текст автореферата практически отсутствует информация о примененных средствах измерений.
- 4. Некоторые редакционные замечания:

- таблица 2.1 диссертации параметру «абсолютная влажность» не соответствует указанная размерность;
 - расчеты в р.2.3 диссертации следовало оформить в виде таблиц;
- таблицы 2.2 и 2.3 диссертации неясно, что означает понятие «мощность»;
- раздел 2.3 (с.65) не указано, каким образом определяется максимальная годовая нагрузка, по которой предполагается осуществлять подбор теплообменников.

Общее заключение по диссертационной работе

Указанные замечания не снижают общего положительного впечатления от диссертационной работы, теоретической и практической ценности выполненных исследований.

Диссертационная работа **Чернякова Евгения Вадимовича** «Повышение энергоэффективности систем подготовки и распределения воздуха чистых помещений», в которой содержится решение задачи, имеющей значение для развития технической отрасли в направлении кондиционирования воздуха, в целом отвечает требованиям п. 9 Положения о присуждении ученых степеней, предъявляемым к кандидатским диссертациям, а ее автор **Черняков Е.В.** заслуживает присуждения ученой степени кандидата технических наук по специальности 05.23.03 — Теплоснабжение, вентиляция, кондиционирование воздуха, газоснабжение и освещение.

Д.т.н., доцент, ФГБОУ ВПО «Санкт-Петербургский государственный архитектурно-строительный университет», профессор кафедры теплогазоснабжения и вентиляции

190005, г. Санкт-Петербург, 2-я Красноармейская ул., д. 4 Тел.: (812) 316-42-13, 575-05-34. Факс: (812) 316-58-72.

E-mail: rector@spbgasu.ru

Уляшева Вера Михайловна

Подпись В. И. Улишевся ЗАВЕРЯЮ

альник упр

ГАСУ

у декабря 20 14 г.