Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

На правах рукописи

Рагех Басем Осами Саиед

ЧИСЛЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ МЕТОД В ПРИЛОЖЕНИИ К БОЛЬШЕПРОЛЕТНЫМ ВАНТОВЫМ МОСТАМ

Специальность 05.23.17 – Строительная механика

Диссертация

на соискание ученой степени кандидата технических наук

Научный руководитель:

заслуженный деятель науки и техники РФ

д.т.н., проф. Масленников А.М.

Начало XXI века сопровождается по-прежнему развитием технического прогресса, в том числе и в строительстве. Возводятся всё более высокие сооружения и строятся большепролетные мосты, основную часть которых составляют вантовые мосты. Причина этого кроется в том, что в таких мостах главными несущими элементами служат ванты, испытывающие продольные усилия; а это случай, когда прочностные свойства конструкции используются наиболее полно. Вследствие этого вантовые мосты экономичнее, хотя уступают другим мостам по жесткости. Мосты являются важным элементом в развитии транспортной структуры страны и часто имеют стратегическое значение. Разрушение моста ведёт к серьезным экономическим последствиям. Поэтому всевозможные исследования по оценке надёжности моста и его живучести можно считать актуальными.

наиболее настоящего исследования заключается В выявлении оптимального натяжения вант, обеспечивающих наименьшие прогибы балки жёсткости моста, что повышает его эксплуатационные качества. Рассматриваются три типа, наиболее часто встречающихся схем вант: арфа, веерная и радиальная. Задача решена путем условной оптимизации целевой функции, в качестве которой принимается потенциальная энергия всей системы от заданной неподвижной нагрузки. Минимизация энергии осуществляется методом сопряженных градиентов. В работе также исследовались динамические свойства оценка живучести при внезапном обрыве моста, его вант другие характеристики.

СОДЕРЖАНИЕ

BBE	ДЕНИЕ7
ГЛА	ВА.1. КРАТКАЯ ИСТОРИЯ ВОЗВЕДЕНИЯ ВАНТОВЫХ МОСТОВ
ИИХ	Х НЕЛИНЕЙНЫХ РАСЧЕТОВ16
1.1.	Краткий обзор возведения вантовых мостов в мире16
1.2.	Схемы расположения вант19
	1.2.1. Система «арфа»
	1.2.2. Система «радиальная»19
	1.2.3. Система «веер»
1.3.	Нелинейное поведение вантовых мостов
	1.3.1. Исторический обзор нелинейных расчётов вантовых мостов21
	1.3.2. Причины нелинейного поведения вантового моста23
	1.3.3. Нелинейное поведение вант
1.4.	Методы оптимизации для оценки оптимального предварительного
	натяжения вант и достижения минимальных деформаций вантовых-
	мостов
	1.4.1. Значимость оценки оптимального предварительного натяжения вант
	при анализе вантовых мостов
	1.4.2. Исторический обзор методов для оценки оптимального
	предварительного натяжения вант
	F
	1.4.3.Алгоритм определения величины оптимального предварительного
	натяжения вант, Хассан. М, 201027
1.5.	Обобщение энергетического метода и метода сопряжённых градиентов при
	разработке алгоритмов диссертации30
	1.5.1. Общая потенциальная энергия элементов вантового моста30
	1.5.2 Минимизация потенциальной энергии моста методом сопряженных
	градиентов
ГЛА	.BA 2. ЭНЕРГЕТИЧЕСКИЙ ПОДХОД ДЛЯ ОЦЕНКИ ОПТИМАЛЬНОГО

ПРЕДВАРИТЕЛЬНОГО НАТЯЖЕНИЯ ВАНТ ПРИ СТАТИЧЕСКОМ АНАЛИЗЕ
BAHTOBЫХ CXEM MOCTOB
2.1. Предложенный алгоритм для оценки оптимального предварительного
натяжения вант
2.2. Геометрическая схема и расчетные данные рассмотренных вариантов
изучаемого моста
2.3. Виляние изменения геометрии моста на деформации изгибных элементов при
выполнении процедуры алгоритма
2.3.1. Оценка прогиба балки жёсткости при процедуре алгоритма41
2.3.2. Оценка перемещения пилона при процедуре алгоритма
2.3.3. Оценка оптимального предварительного натяжения вант в конце
процесса алгоритма46
2.4. Отношение перемещений балка жёсткости - пилон при нелинейном
статическом анализе вантовых мостов
2.5. Виляние схем вант на деформации изгибных элементов моста при процедуре
алгоритма
2.5.1. Оценка прогиба балки жёсткости при применении разных схем вант
48
2.5.2. Оценка перемещения пилона при применении разных схем вант
52
2.5.3. Оценка оптимального предварительного натяжения вант при
применении разных схем вант53
2.6. Достоверность результатов предлагаемого алгоритма54
2.6.1. Геометрическая схема и расчетные данные изучаемого моста55
2.6.2. Сравнение двух алгоритмов для оценки деформаций моста57
2.6.3. Сравнение двух алгоритмов для оценки оптимального
предварительного натяжения вант
2.7. Достоверность предлагаемого уравнения для нахождения отношения
перемещений балка жесткости - пилон при нелинейном статическом анализе
*

вантовых мостов. 60		
Выводы		
ГЛАВА 3. СВОБОДНЫЕ КОЛЕБАНИЯ И ВЕТРОВОЙ РЕЗОНАНС ВАНТОВЫХ		
MOCTOB64		
3.1. Определение частоты свободных колебаний вантовых мостов		
3.1.1. 3D моделирование вантовых мостов с различными схемами вант с		
помощью SAP 2000 для определения частот свободных колебаний (численный		
метод)		
3.1.2. Определение частоты свободных колебаний для разных схем вантовых		
мостов		
3.2. Приближенная оценка достоверности результатов частот свободных		
колебаний энергетическим методом. (Аналитический метод)		
3.2.1. Определение низшей частоты горизонтальных свободных		
колебаний73		
3.2.2. Определение низшей частоты вертикальных колебаний балки		
жёсткости		
3.3. Ветровой резонанс вант		
3.3.1. Оценка окончательного деформированного вида моста, натяжение и		
провеса вант80		
3.3.2. Определение критической скорости ветра для зоны резонанса82		
3.4. Скорости ветра, вызывающие резонанс вантовых мостов		
3.4.1. Ветровой резонанс среднего пролета моста		
Выводы		
ГЛАВА 4. ВЛИЯНИЕ ВНЕЗАПНОГО ОБРЫВА ВАНТ НА		
ДИНАМИЧЕСКИЙ ОТКЛИК ВАНТОВЫХ МОСТОВ		
4.1. Значимость изучения влияния внезапного обрыва вант на динамический		
отклик вантовых мостов		
4.2. Обобщение энергетического метода, используемого в разработке		
предлагаемого алгоритма		

4.3. Предлагаемый алгоритм для вычисления динамического отклика вантовых
мостов при внезапном обрыве вант
4.4. Сценарий обрыва вант
4.5 Оценка деформаций моста при обрыве вант
4.5.1. Оценка прогиба балки жёсткости при рассмотренных сценария:
обрыва вант100
4.5.2. Оценка перемещения пилона при рассмотренных сценариях обрыва
вант
4.5.3. Динамический эффект для оценки деформации моста при
рассмотренных сценариях обрыва вант
4.6. Влияние внезапного обрыва вант на увлечение растягивающей силы
смежных вантах
4.6.1. Оценка натяжений в смежных вантах при рассмотренных сценария:
обрыва вант106
4.6.2. Предлагаемый динамический коэффициент для смежных вант при
рассмотренных сценариях обрыва вант108
Выводы109
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ 112
ПРИЛОЖЕНИЯ124
ПРИЛОЖЕНИЕ.1 124
ПРИЛОЖЕНИЕ.2 143
ПРИЛОЖЕНИЕ.3 150

ВВЕДЕНИЕ

Анализ существующего мостостроения свидетельствует о том, что для перекрытий больших пролётов возводят, как правило, висячие либо вантовые мосты. Вызвано это местными условиями, техническими возможностями и др. Но главная причина вызвана снижением материалоёмкости конструкций таких мостов. Объясняется это тем, что в этих мостах основные несущие элементы испытывают только растяжение, при котором наиболее полно используются прочностные свойства материала в поперечном сечении элементов (канаты, ванты). Одним из ярких примеров является висячий мост пролетом 1280 м через пролив Золотые ворота в Сан-Франциско. Мост был построен в 1937 году.

Однако, за последние 30-40 лет получили широкое распространение вантовые мосты при строительстве большепролётных мостов. Так, одним из последних был построен вантовый мост с максимальным пролётом 1104 м во Владивостоке через пролив Босфор Восточный. В предыдущие годы подобные мосты были построены и в других странах с максимальными пролетами: в Китайской Народной Республике - пролетом 1088 м, в Японии - 890 м.

Вантовые мосты по своим эксплуатационным качествам имеют определенные преимущества по сравнению с висячими мостами. Они более жёсткие из-за наличия продольных сил в балке жесткости и, главное, более надёжные, что особенно ценно в наше неспокойное время. Обрыв одного или нескольких вант моста ещё не приводит к его катастрофическому обрушению. В висячих мостах обрыв канатов недопустим.

Настоящая работа посвящена статическому и динамическому расчёту вантовых мостов, наиболее интересных для расчета с позиций строительной механики. Большепролётный вантовый мост представляет собой многократную статически неопределимую систему. Расчёт такой системы классическими методами сил или перемещений при нелинейной зависимости между натяжением вант и деформациями балки жёсткости приводит к многократному пересчёту, не всегда ведущему к наиболее рациональному решению.

В диссертации предложен энергетический численный метод для вычисления оптимального предварительного натяжения вант и уменьшения деформации моста, когда составляется выражение полной энергии для всех элементов моста. Затем, в соответствии с общим свойством потенциальной энергии, вычисляется её минимум. Для вычисления минимума реализуется метод сопряжённых градиентов в численном виде.

Идеи этого метода использованы при решении задач динамики по оценке живучести вантового моста при частичном разрыве вант. Вычисление проводится по собственной программе, составленной на языке ФОРТРАН. В диссертации рассмотрены и другие аспекты вантового моста: ветровой резонанс вант и балки жёсткости максимального пролета. С целью верификации собственных частот, полученных численным методом с помощью программы *SAP* 2000, аналитически приближённо определены низшие частоты собственных колебаний максимального пролета моста.

Актуальность исследования. В последние годы в мировой практике для перекрытия больших пролетов всё чаще стали применять вантовые покрытия как промышленном, гражданском строительстве, так и в мостостроении. Привлекательность вантовых строений вызвана уменьшением материалоёмкости при их возведении. В таких конструкциях основными несущими элементами являются ванты, работающие, как правило, на растяжение. При таком напряжённом состоянии материал конструкции используется наиболее полно. В какой - то мере сдерживающим фактором их дальнейшего развития и обеспечения их надёжности является податливость вантовых сооружений. Они значительно страдают от ветрового воздействия, действующего совместного с другими нагрузками. В этой связи, естественно, требуются дополнительные исследования в области определения напряжённого и деформированного состояния таких конструкций, как большепролётные вантовые мосты. Например, в Египте обсуждается идея о строительстве вантового моста длиной более одного километра через залив Акаба непосредственно из Египта в Саудовскую Аравию,

что естественно, оживило интерес к вантовым мостам и сделало тему исследования актуальной.

Степень разработанности темы исследования. В России на эту тему наиболее известны работы ученых В.К. Качурина, А.В. Брагина, А.А. Петропавловского, В.А. Смирнова, С.А. Бахтина, В.И. Кириенко, Е.И. Крыльцова, И.Г. Овчинникова, Ю.М. Сильницкого, Н.М. Кирсанова, А.М. Кушнерева и др. В работах этих авторов приводятся не только расчеты вантовых мостов, но и вопросы их проектирования и даже возведения. Вопросам аэродинамической неустойчивости посвящены статьи М.И. Казакевича. Расчётам мостов на подвижную нагрузку уделено много внимания сотрудниками кафедры строительной механики Воронежского ГАСУ (А.Д. Барченков, В.С. Сафронов и др.).

Методам оптимизации по достижению минимальных деформаций вантовых мостов, оценкам оптимального предварительного натяжения вант уделили внимание зарубежные авторы Ванг и др. (Wang et al), 1993 г.; Саймос и Неграо (Simoes and Negrao), 2000 г.; Щен и др. (Chen et al), 2000 г.; Жанжис и др. (Janjic et al), 2003 г.; Ли и др. (Lee et al), 2008 г. Наиболее близка по теме диссертации последняя работа Хассана М (*Hassan*. M), 2010 г. В работе Хассана разработан новый алгоритм, использующий В-сплайн функции и метод конечных элементов при нелинейном статическом анализе моста. В работе минимизировались прогибы балки жесткости и перемещения пилона для веер-образной схемы вантого моста. Применение алгоритма Хассана достаточно сложное. Чтобы получить подходящую кривую В-сплайна, обеспечивающую минимальные деформации моста, необходимы многократные расчеты. Для вантового продолжения исследования этого вопроса в настоящей диссертации предложен алгоритм, где при минимизации энергии на каждом шаге интегрирования нелинейных дифференциальных уравнений реализован метод сопряженных градиентов.

Определением частот свободных колебаний вантовых мостов с помощью различных программ МКЭ в последнее время занимались многие авторы: С.Н. Горелов, В.И. Жаданов, М.А. Аркаев, 2012, Г.М. Кадисов, В.В. Чернышов, 2013.

В диссертации численный анализ динамики моста проведён с использованием известной программы *SAP 2000*. С целью верификации результатов численного определения частот свободных колебаний в диссертации использован аналитический метод, основанный на свойствах потенциальной энергии. Расчёт выполнен с учётом продольных усилий в балке жесткости. Аналитический метод в ряде случаев целесообразно использовать при предварительном моделировании мостов.

Изучение поведения вантовых мостов при внезапном разрыве вант является первом шагом в разработке актуальных методов, которые могут увеличить долговечность И живучесть вантовых мостов И предотвратить катастрофического крушения. В последние несколько лет исследования по этой теме были проведены следующими специалистами: У. Старусек (*U. Starossek*), 2006.; К. Щин Щинг и др. (Chin- Shing, Kao et al), 2010.; М. Волф и др. (Wolff, M et al), 2010.; Жиан Гио, Цай и др. (Jian-guo, Cai et al), 2012.; Ким и др. (YuHee, Kim et al), 2012. Выполненные названными авторами исследования не в полной мере охватили вопросы живучести вантовых мостов. В предлагаемой диссертации для решения вопросов надёжности предложен новый алгоритм, основанный на энергетическом методе, и разработанный для исследования динамического поведения вантовых мостов при внезапном разрыве вант.

Цель и задачи исследования.

Цель исследования — создание эффективного алгоритма по сравнению с алгоритмами, предложенными другими авторами, для определения оптимального натяжения вант большепролётного вантового моста и специального алгоритма для оценки надежности и живучести моста при обрыве вант, реализованных в энергетическом численном методе.

Задачи исследования:

- 1. Изучить современные нелинейные методы расчёта большепролётных вантовых мостов.
- 2. Создать алгоритм определения оптимального натяжения вант на основе нелинейного математического моделирования.

- 3. Создать программу для ЭВМ на языке ФОРТРАН, реализующую предлагаемый метод в численном виде для различных схем вант с учётом их провеса.
- 4. Исследовать эффективности трех схем вант: "арфа", "веер" и радиальная при нелинейном расчёте.
- 5. С целью установления достоверности результатов работы сравнить их с последними подобными работами других авторов.
- 6. Установить универсальную зависимость между прогибами балки жёсткости и пилонами, необходимую при предварительном проектировании вантовых мостов.
- 7. Исследовать динамические характеристики трех схем вантового моста с использованием программы *SAP 2000*.
- 8. Для верификации численных результатов приближённым аналитическим методом вычислить частоты собственных колебаний и привести процедуру расчёта на ветровой резонанс вант и среднего пролета моста.
- 9. Разработать нелинейный динамический анализ и на его основе исследовать живучесть моста при внезапном обрыве вант.

Объект исследования: Большой трёхпролетный вантовый мост с железобетонными пилонами, стальной балкой жесткости и гибкими вантами.

Предмет исследования: Оптимальное натяжение разных схем вант при действии неподвижной нагрузки, выявление динамических характеристик моста, исследование живучести моста при внезапном обрыве вант.

Научная новизна диссертационной работы заключается в следующем:

1. На основе нелинейного математического моделирования разработан энергетический численный метод определения оптимального натяжения вант, обеспечивающий минимальные деформации моста. Для реализации этого метода создан собственный более совершенный алгоритм и программа на языке ФОРТРАН, позволяющая получить деформации моста с большей точностью.

- 2. Исследована эффективность несущей способности трёх схем вант: "Арфа", "веер" и радиальная и выявлено, что радиальная схема вант является наиболее эффективной при минимизации деформация моста.
- 3. Выполнено специальное детальное сопоставление результатов предлагаемого метода с одной из последних работ Хассана, М., показавшее преимущество предлагаемого метода при минимизации потенциальной энергии.
- 4. Установлена новая универсальная зависимость между прогибами балки жёсткости и пилонами.
- 5. Впервые аналитическим методом исследовано влияние продольных усилий в балке жёсткости на значения частот свободных колебаний вантовых мостов. Вычисления выполнены для радиальной схемы вант с целью верификации результатов, полученных по программе SAP 2000. Определены критические скорости ветра при ветровом резонансе для вант и среднего пролета моста.
- 6. Разработан новый специальный алгоритм и программа нелинейного динамического расчёта на языке ФОРТРАН для исследования живучести вантового моста при внезапном обрыве вант, выявлен динамический эффект этого воздействия, предложен динамический коэффициент для смежных вант при обрыве для рассматриваемой ситуации.

Методологической основой диссертационного исследования послужило использование математического моделирования, методов строительной механики и теории упругости, включая метод сопряженных градиентов и метод конечных элементов.

Личный вклад соискателя. Постановка задачи и новые результаты диссертационной работы принадлежат лично автору. Во всех работах, опубликованных в соавторстве, автору принадлежит большая часть формулировки задачи и её решение.

Область исследования соответствует паспорту специальности 05.23.17 - Строительная механика, пункт 4 «Численные методы расчёта сооружений и их элементов»; пункт 5 «Теория и методы оптимизации сооружений»; пункт 7

«Теория и методы расчёта сооружений в экстремальных ситуациях (землетрясения, ураганы, взрывы, и так далее).

Практическая ценность диссертационной работы заключается в возможности использования предложенного в диссертации метода оптимизации натяжения вант вместе с составленной программой для ЭВМ при проектировании большепролетных вантовых мостов. Результаты по исследованию живучести моста могут быть использованы для оценки состояния моста при чрезвычайных ситуациях.

Апробация работы.

Результаты диссертационной работы докладывались и обсуждались на международных конференциях:

- Международная научно-практическая конференция «Актуальные проблемы современного строительства и пути их эффективного решения», СПбГАСУ, 10 12 апреля 2012 года;
- Международная научно-практическая конференция студентов, аспирантов, молодых ученых и докторантов «Актуальные проблемы строительства и архитектуры», СПбГАСУ, 10-12 октября 2012 года;
- Международная научно-практическая конференция студентов, аспирантов, молодых ученых и докторантов «Актуальные проблемы строительства и архитектуры», СПбГАСУ, 10 12 апреля 2013 года;
- V-я Международная конференция «Актуальные проблемы архитектуры и строительства», СПбГАСУ, 25 28 июня 2013 года;
- 25-я Международная конференция BEM&FEM «Математическое моделирование в механике деформируемых тел и конструкций. Методы граничных и конечных элементов», СПбГАСУ, 23-26 сентября 2013 года.

Публикации

Основные положения диссертационной работы опубликованы в 11 печатных работах, общим объемом 3,65 п.л., (лично автору принадлежит 2,9 п.л.),

из них 4 статьи в журналах, включенных в перечень рецензируемых изданий, утвержденный ВАК.

Внедрение научных результатов диссертации. Университет г. Мансура (Египет) выдал декларацию о дееспособности составленной программы на языке ФОРТРАН и о научной ценности результатов диссертации.

Структура и объём работы. Диссертационная работа состоит из введения, четырех глав, заключения и приложений, изложенных на 152 страницах, содержит 54 рисунка, 7 таблиц; список литературы состоит из 121 наименования, в том числе 78 — на иностранном языке.

<u>Во введении</u> сформулирована проблема и обоснована актуальность проводимых исследований, определены цель и задачи, научная и практическая значимость диссертационной работы.

<u>В первой главе</u> представлен краткий обзор строительства вантовых мостов и их нелинейных расчетов, а также методы оптимизации для оценки оптимального предварительного натяжения вант. В конце главы представлено обобщение энергетического метода и метода сопряженных градиентов, используемых в разработке алгоритмов диссертации.

<u>Во второй главе</u> предложен алгоритм для вычисления оптимального предварительного натяжения вант, обеспечивающих минимальные деформации моста, выполнено моделирование исследуемых схем вант большепролётных мостов с учётом эффекта геометрической нелинейности энергетическим методом, в котором для минимизации энергии использован метод сопряжённых градиентов, а также предложена новая универсальная зависимость между прогибами балки жесткости и пилонами.

<u>В тремьей главе</u> приведена процедура расчёта на ветровой резонанс отдельных вант и среднего пролёта моста. Также предложен аналитический расчёт для определения частоты свободных колебаний вантовых мостов с целью экономии времени в процессе моделировании моста и верификации результатов

численного метода КЭ; выполнено определение частот приближённым аналитическим методом для радиальной схемы вант.

<u>В четвертой главе</u> исследована живучесть вантового моста при внезапном обрыве вант. Разработан специальный алгоритм нелинейного динамического расчёта, выявлен динамический эффект вследствие внезапного обрыва вант, предложен динамический коэффициент для смежных вант при обрыве.

ГЛАВА 1. КРАТКАЯ ИСТОРИЯ ВОЗВЕДЕНИЯ ВАНТОВЫХ МОСТОВ И ИХ НЕЛИНЕЙНЫХ РАСЧЕТОВ

1.1. Краткий обзор возведения вантовых мостов в мире

Вантовые мосты являются многократными статически неопределимыми конструкциями и, вследствие этого, представляют собой более сложную задачу при их расчётах, чем другие традиционные мосты. Структурная система вантового моста состоит из трёх основных несущих элементов: балка жёсткости, пилоны и наклонные ванты. Взаимосвязь этих элементов делает структурное поведение вантовых мостов эффективным для большепролётных сооружений. Балка жёсткости работает как неразрезная балка. Она поддерживается вантами, которые подсоединены к пилонам. Балка жёсткости передаёт нагрузку на пилоны через ванты, которые испытывают растяжение (рис.1.1), а балка жёсткости воспринимает изгиб и продольные усилия. Сжатый пилон передаёт нагрузку на фундамент.

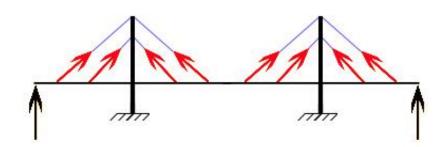


Рис.1.1. Схема растянутых и сжатых элементов вантовых мостов

Вантовые мосты приобрели популярность во всем мире как жизнеспособная конструкция для средних и длинных пролетов. Их эстетическая форма и быстрый монтаж являются главными причинами их широкой популярности.

История строительства вантовых мостов датируются многими веками. Идея вант использовалась египтянами для своих парусных судов. История вантовых мостов началось, когда были введены первые понятия вантового моста, согласно

работы Подольный и Флеминг [111]. В 1784 г. немецкий плотник С.Т. Лёшер спроектировал вантовый мост полностью из древесины [112], как показано на рис.1.2. Вантовые мосты стали популярными после второй мировой войны. Первый современный вантовый мост, который ознаменовал начало впечатляющего развития вантовой системы, был Стромсунд мост в Швеции [106], открытый в 1956 г. (рис.1.3) с главным пролетом 183 м. Этот мост был действительно первым крупным вантовым мостом в мире. В настоящее время существует более 600 вантовых мостов во всем мире, и это число быстро возрастает. С 1955 года пролёты вантовых мостов значительно увеличились. Мост Нойенкамп в Германии с главным пролётом 350 м был самым длинным вантовым мостом в начале 1970-х. Первое применение большого количества вант с двойными плоскостями кабельных систем сделано в Köhlbrand мосту, Гамбург (1974 г.) [82], с использованием веер-образной схемы для расположения вант. В середине 1980-х, мост на Анис остров был завершён с основным пролетом 465 м. В 1994 году ещё два мега моста были завершены, мост Нормандия и Янпу мост с основными пролетами 856 м и 602 м, соответственно. Татара мост, Япония, был самым длинным вантовым мостом в мире в 1999 г, с общим пролётом 1480 м и центральным пролетом 890 м, что больше на 34 м, чем мост Нормандии во Франции. В 2009 году был построен Сутун мост с центральным пролетом 1088 м. В том году он являлся самым длинным мостом в мире [54, 106].

В России наибольший интерес представляют вантово-балочные мосты [3]: Череповец, мост через р. Шексну построен в 1983 г. с пролетом 194 м, система «веер» с малым числом вант. В 2000 г. в постоянную эксплуатацию введён мост с одним пилоном через р. Обь у г. Сургут с основным пролетом 408 м, система многовантовая, «веер». В 2002 г в Санкт-Петербурге, построен вантовый мост через р. Неву с основным пролетом 382 м. В 2012 году был построен вантовый мост во Владивостоке через пролив Босфор Восточный с максимальным пролетом 1104 м, который является самым длинным вантовым мостом в мире до сих пор.

В Египте 6 октября мост, построенный в 1996 году, считается первым современном вантовым мостом в Египте с пролетом 128 м и шириной 10.9 м. Пилон моста имеет двухстоечную форму со схемой вант «арфа». Второй вантовый мост построен в 2002 году через Суэцкий канал с центральным пролётом 404 м. В настоящее время в Египте обсуждается идея о строительстве вантового моста длиной более одного километра через залив Акаба непосредственно из Египта в Саудовскую Аравию, что естественно, оживило интерес к вантовым мостам.

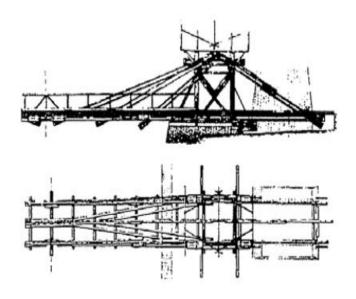


Рис.1.2. Мост Лёшера, Германия, 1784 [112]

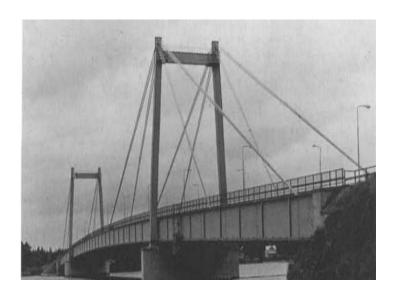


Рис.1.3. Стромсунд мост, Швеция, 1955 [106]

1.2. Схемы расположения вант

Выбор схемы расположения вант является фундаментальным вопросом при анализе вантовых мостов. Схемы классифицируются следующим образом [6, 64]:

1.2.1. Система «арфа»

Система «арфа» является наиболее привлекательной схемой, обеспечивающей элегантность и баланс в структуре моста. В соответствии с расположением вант в этой системе параллельные ванты закреплены по всей поверхности пилонов (рис.1.4) и расположены друг относительно друга под постоянным углом.

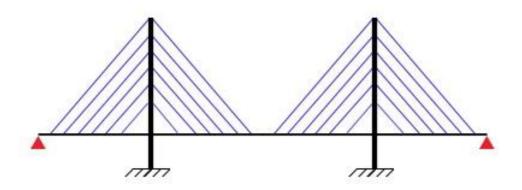


Рис.1.4. Система «арфа»

1.2.2. Система «радиальная»

При радиальной схеме все ванты прикреплены к верхней части пилона, как показано на рис 1.5. Все ванты имеют свой максимальный наклон, поэтому объём материала для балки жёсткости уменьшается. Однако, выбор этой схемы может вызвать проблемы с креплением вант в одном месте, что является достаточно сложным.

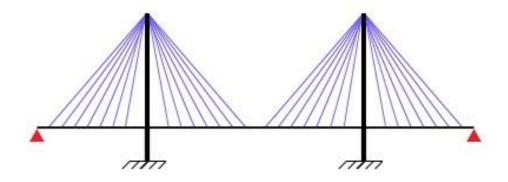


Рис.1.5. Система «радиальная»

1.2.3. Система «веер»

Система «веер» является комбинацией арфы и радиальной схем (рис. 1.6). Согласно этой схеме, ванты распространены в верхней части пилонов, обеспечивая, таким образом, лучшие концевые крепления вант с пилонами. Закрепление первого ванта на пилон при монтаже обычно делается сверху, обеспечивая большее расстояние между вантами, чем для остальных шагов вант по всей части моста. Кроме того, расположение вант близко друг к другу на пилонах в итоге уменьшает горизонтальные силы, возникающие в пилонах, предлагая большую свободу при различных движениях балки жесткости.

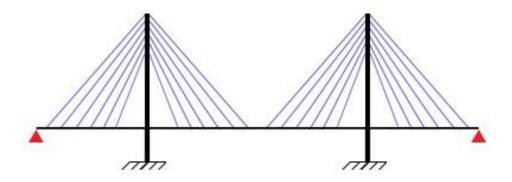


Рис.1.6. Система «веер»

1.3. Нелинейное поведение вантовых мостов

1.3.1. Исторический обзор нелинейных расчетов вантовых мостов

В России наиболее известны на эту тему работы ученых В.К. Качурина, А.В. Брагина, А.А. Петропавловского, В.А. Смирнова, С.А. Бахтина, В.И. Кириенко, Е.И. Крыльцова, И.Г. Овчинникова, Ю.М. Сильницкого, Н.М. Кирсанова, А.М. Кушнерева и др [5, 15, 16, 17, 20, 21, 29, 31, 32, 42]. В работах этих авторов приводятся не только расчёты вантовых мостов, но и вопросы проектирования и даже возведения. Вопросам аэродинамической неустойчивости посвящены статьи М.И Казакевича, расчётам мостов на подвижную нагрузку много внимания сотрудниками кафедры строительной механики Воронежского ГАСУ (А.Д Барченков, В.С. Сафронов и др.). Среди зарубежных авторов необходимо выделить Смит Б С (Smith B S), Ф. Барон (F. Baron), С.Ю. Лиен (S.Y. Lien), Флеминг Ж.Ф (Fleming J.F), М.С. Танг (M.C. Tang), Троицкий М. S (Troitsky M. S), P. Волтер (R. Walter), Жимсинг Н.Ж (Gimsing N.J), Ванг П.Х (Wang P.H), Янг С.Ж (Yang C.G), Щунг М.с (Cheung M.S) и др. [48, 57, 62, 65, 101, 102, 108, 110, 112, 115]. В работах этих авторов приводятся статический и динамический расчёты вантовых и висячих мостов, расчёт на аэродинамическую неустойчивость и расчёты мостов на подвижную нагрузку.

Строительные инженеры в течение многих лет пользовались линейными решениями. Линейный анализ сооружений означает, что перемещения являются линейной функцией от нагрузок. Такое предположение можно принимать при расчётах простых систем потому, что во-первых, большинство обычных сооружений под прикладываемой нагрузкой ведут себя довольно линейно, вовторых, линейное решение гораздо проще, чем нелинейное. Линейный анализ определяет деформации на основе исходной геометрии и предполагает, что можно пренебречь отклонениями от начальной геометрии.

Сафан [98] разработал физическое понятие, которое может позволить выполнить нелинейный анализ путём последовательных итераций линейных

подпрограмм. В своём анализе вектор перемещений определяется на основе начальной геометрии системы и внешних нагрузок. На втором этапе деформации, определенные на первом этапе, используются для создания матрицы жёсткости. Итерационная процедура продолжается, и каждый шаг будет использовать данные, определённые в предыдущем шаге. Итерация останавливается, когда последний вектор перемещений представляет незначительную часть от общего перемещения.

Вантовые мосты обычно имеют нелинейное поведение при разных видах Исследования нелинейного поведения вантовых были мостов проведены с 1970-х гг. В 1971 г. Танг [108] провёл линейный и нелинейный анализ вантовых мостов. Через год Лазарь [79] применил метод жёсткости при нелинейном анализе вантовых мостов. Это было существенным прогрессом в разработке методов для анализа каркасных конструкций с учётом нелинейности из-за больших перемещений и нелинейности вант. В 1973 г. Барон и Лянь [48] предложили нелинейный расчёт, в котором метод конечных элементов был использован для определения влияния разных статических нагрузок на отклик моста. Флеминг [62] провёл в 1979 г. нелинейный статический анализ вантовых мостов в виде плоской рамно-ферменной конструкции. Процедура комбинированной с возрастающим итерационным подходом. В статье Астиза и Мантерола [46] был представлен общий метод, основанный на алгоритме Ньютона-Рафсона в 1980. В том же году Раджараман и др. [96] предложили подход для нелинейного анализа вантовых мостов. Они приняли расчётную модель моста в виде плоской рамно-ферменной конструкции при вычислении деформаций. Все геометрические нелинейности были включены в анализ. Деформации были использованы для управления итерационной процедурой. Метод жёсткости был использован для исследования поведения веер-образной схемы вантового моста. В 1982 г, Бахтин С.А. [4] изучал геометрическую нелинейность при оптимальном проектировании висячих пролетных строений мостов. В 1986 г. Хеджаб [71] предложил использовать метод потенциальной

энергии при анализе вантовых мостов. Пилоны не были включены в уравнении энергии для моста. В статье Хеджаба предложен деформационный расчёт для определения прогибов балки жёсткости моста. В начале 1990-х г, Назми и Абдель-Гаффаром [87] провели нелинейный статический анализ трёхмерных большепролётных вантовых мостов под действием собственного веса и предварительного натяжения вант с учётом всех геометрических нелинейностей. В 2006 году А.М.S. Фрейере, Ж.Н.О. Негро и А.В. Лопез исследовали геометрическую нелинейность при статическом анализе вантовых мостов [63]. Они пришли к выводу, что линейный анализ современных большепролетных вантовых мостов, которые имеют большую гибкость, не даёт удовлетворительных результатов по сравнению с полученными результатами, которые включают геометрические нелинейности. Они также указали, что провисание вант имеет наиболее важное нелинейное поведение и может являться решающим вопросом в глобальном поведении вантовых мостов.

1.3.2. Причины нелинейного поведения вантового моста

Методы расчёта вантовых мостов можно разделить на две категории: линейный анализ и нелинейный анализ. В линейном анализе статический отклик вантового моста можно получить, если рассчитывать балку жёсткости как неразрезную балку на жёстких опорах (ванты анкеры). Чтобы получить более высокую точность в анализе, балка жесткости рассматривается, как балка на упругом основании. Смит [101] предложил линейный подход, в котором перемещения и силы представлялись в матричной форме, чтобы получить неизвестные из системы уравнений. Другие различные методы, такие как метод сил, метод перемещения и аналитические методы, могут применяться для решения проблемы. Статический анализ вантовых и висячих мостов был изложен в различных известных литературных источниках, где использовались метод сил, метод перемещения и аналитические методы [9, 11, 15, 31, 37, 40, 65, 112].

Большие перемещения вызывают нелинейности при изменении геометрии сооружения, при которой её жёсткость была изначально рассчитана. Большие

перемещения сооружения и нелинейные свойства вант считаются основными причинами нелинейного поведения вантовых мостов [115]. Статический расчёт нелинейных ните-стержневых систем и расчётные модели гибкой нити изложены в [2, 12, 41, 72, 73].

Несколько исследователей изучали нелинейное поведение вантовых мостов [44, 45, 63, 76, 77, 78, 113], и в последнее время в [51].

1.3.3. Нелинейное поведение вант

Когда вант подвешивается за концы, под собственным весом и действием осевой растягивающей силы он провисает в виде цепной линии. Осевая жёсткость вант будет меняться при изменении провисания. При увеличении осевого натяжения вант провис вант становится меньше. При использовании прямого элемента для моделирования вант необходимо учитывать эффект провисания. При изучении нелинейности от провисания наклонных вант удобно использовать эквивалентный модуль упругости для моделирования характеристик вант. Эрнст [60] изучал влияние провисания вант на его осевую жёсткость. Если рассмотрим наклонный вант под его собственным весом, то принимаем эквивалентный модуль упругости следующим образом:

$$E_{eq} = \frac{E}{1 + \frac{(w_c \cdot L^2) \cdot A_C \cdot E}{12T^3}}$$
(1.1)

Где E - эффективный модуль упругости, E_{eq} - эквивалентный модуль упругости, A- площадь поперечного сечения ванта, w- погонный вес ванта, L- горизонтальная проекция длины ванта и T- усилие натяжения в ванте.

Эквивалентный модуль упругости сочетает в себе эффекты деформации материала и геометрической нелинейности. Величина эквивалентного модуля зависит от веса и натяжения вант. Рис 1.7 четко представляет нелинейное поведение вантовых и стандартных сооружений [86]. Учёт нелинейности вант обрабатывается в данном исследовании с использованием формулы Эрнста.

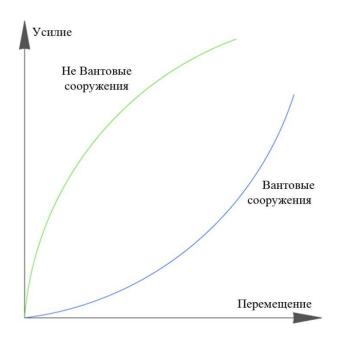


Рис.1.7. Нелинейности вантового сооружения [86]

1.4. Методы оптимизации для оценки оптимального предварительного натяжения вант и достижения минимальных деформаций вантовых мостов

1.4.1. Значимость оценки оптимального предварительного натяжения вант при анализе вантовых мостов

Статический отклик вантовых мостов существенно зависит ОТ нагрузки между тремя основными частями моста (балка распределения жесткости, ванты и пилоны). Предварительное натяжение вант обеспечивает главную роль в изменении распределения нагрузки на мост с различными значениями натяжения. Оценивая соответствующее предварительное натяжение каждого ванта, можно улучшить распределение нагрузки на мост и, таким образом, уменьшить прогиб балки жёсткости, который считается одной из основных задач при проектировании этого типа мостов. Кроме того, перемещение пилона также уменьшается; следовательно, вторичного момента пилона можно избежать. Это может привести к более экономичной конструкции. Поэтому определение оптимального предварительного натяжения является одним из важных вопросов в расчётах вантовых мостов.

1.4.2. Исторический обзор методов оценки оптимального предварительного натяжения вант

Ванг и др. в 1993 г. [114] предложили метод нулевого перемещения для определения предварительного натяжения вант и деформаций вантового моста под действием собственного веса. Метод учитывает нелинейность из-за эффекта провисания вант. В этом методе не задаются величинами предварительного натяжения вант в начале итерационного процесса. Предполагается, что желаемое значение прогиба балки жёсткости является нулевым при равновесном положении вантового моста под действием собственного веса, при итерационном процессе. Хотя первое деформированное состояние моста, полученное через итерационный процесс, удовлетворяет условиям равновесия, оно не приводит к нулевому прогибу.

В методе оптимизации, предложенном Неграо и Саймос, в 1997 г. [88] и Саймос и Неграо, в 2000 г. [100], предварительные натяжения вант определяются с помощью минимизации выпуклой скалярной функции. Эта функция объединяет размеры сечений элементов моста, общую геометрию и предварительное натяжение, где максимальные и минимальные допустимые натяжения в вантах и прогиб палки жёсткости ограничены. Алгоритмы программирования, используемые в этом методе, запирают получение оптимального решения. Кроме того, они очень чувствительны к ограничениям, которые должны быть наложены очень осторожно, чтобы получить желаемые результаты (Щен. и др. 2000) [55].

Щен и др. в 2000 г. [55] предложили метод баланса силы. В этом методе усилия натяжения в ванте рассматриваются как независимые переменные для достижения целевых изгибающих моментов в балки жёсткости. Целевые моменты определяются при замене всех вант, которые поддерживают балки жёсткости с жёсткими простыми опорами. Затем вычисляются коэффициенты, которые представляют изгибающие моменты в узлах, соединяющих балки жёсткости и ванты при единичном значении силы в каждом ванте. Оценку предварительного натяжения вант можно получить, рассматривая равновесие на предыдущем этапе.

Рассчитанные силы натяжения вант используются для обновления изгибающих моментов в балке жёсткости, которые затем используются для обновления натяжения вант. Последние два шага повторяются до тех пор, пока изгибающие моменты не сойдутся к целевому значению изгибающего момента. В этом методе трудно контролировать изгибающие моменты в соединении (пилон - балка жесткости).

Жанжис и др. в 2003 г. [74] предложили метод единичной силы (ULM). Метод учитывает эффект геометрической нелинейности. Жанжис и др. представили эффектную схему для получения оптимального предварительного натяжения вант. Кроме того, изгибающие моменты, находящиеся на соединении вант – балка жесткости, используются для достижения этой цели.

Ли и др. в 2008 г. [80] предложили оптимизацию стратегии натяжения вант для асимметричного вантового моста и её эффект на процесс строительства моста.

Новый алгоритм, разработанный Хассаном. М, в 2010 г. [70], использует Всплайн функцию и метод конечных элементов при нелинейном статическом анализе моста. В работе минимизировались прогибы балки жёсткости и перемещения пилона для веер-образной схемы вантового моста.

1.4.3. Алгоритм определения величины оптимального предварительного натяжения вант, Хассан. М, 2010

Хассан. М., 2010 [70] разработал новый алгоритм, использующий В-сплайн функции, где математическая модель моста анализируется методом конечных элементов. Свойства и преимущества кривых В-сплайн функции приведены в работах Пигла, 1991 [89] и Поразади, 2000 [90].

В данном алгоритме кривые В-сплайн выбирают так, чтобы представить предварительное вынужденное натяжение в каждом ванте, как показано на рис. 1.8. Степень кривой В-сплайна C(u), определяется следующим образом:

$$C(u) = \sum_{i=0}^{n} N_{i, p}(u) p_{i}, \quad 0 \le u \le 1$$
(1.2)

$$N_{i,p}(u) = \frac{u - u_i}{u_{i+p} - u_i} N_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(u)$$
(1.3)

где u независимые переменные, а p_i , являются контрольными точками. Полигон, образованный контрольными точками p_i , называется контрольным полигоном. Представление усилий натяжения вант с помощью кривых В-сплайн показаны на рис.1.8.

Шаги для определения местоположения точек на кривой B-сплайна при определенном значений u детализируются таким образом:

Определить количество контрольных точек (p)

Определить координаты контрольных B-сплайн точек (u).

Вычислить функцию (1.3).

Умножить значения $N_{i,p(u)}$ на соответствующие контрольные точки по (1.2). Процедуры алгоритма показаны на рис.1.9.

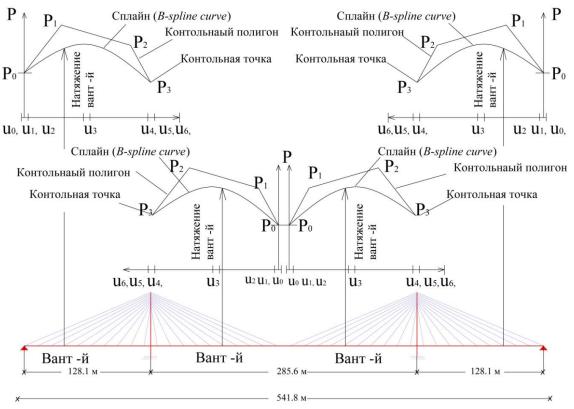


Рис.1.8. Представление усилий натяжения вант кривыми В-сплайн

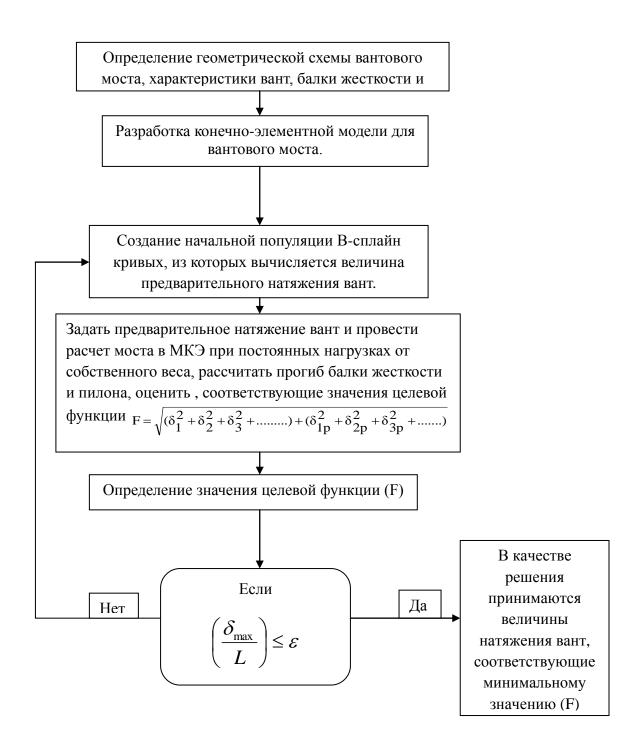


Рис. 1.9. Алгоритм определения величины оптимального предварительного натяжения вант, Хассан М, 2010

Согласно предыдущему алгоритму $\delta_{1,}\delta_{2}$ вертикальный прогиб балки жесткости, $\delta_{1p,}\delta_{2p}$ перемещения пилона, ϵ =1.5x10⁻⁴, $\it L$ – главный пролет моста.

1.5. Обобщение энергетического метода и метода сопряженных градиентов при разработке алгоритмов диссертации

1.5.1. Общая потенциальная энергия элементов вантового моста

Вантовые конструкции обладают геометрически нелинейным поведением, они являются очень гибкими и испытывают большие перемещения при достижении их равновесия. В связи с этим, по своей сути нелинейного поведения, обычный линейный анализ, который предполагает малые перемещения, часто не применяется [87]

В настоящей диссертационной работе энергетический метод проводится для решения некоторых статических и динамических задач, относящихся к вантовым мостам.

Энергетический метод действительно является достаточно обоснованным при расчете небольших и крупных сооружений. Физическая и геометрическая нелинейности непосредственно включается в выражения метода, тем самым учитываются большие перемещения и деформации, а также изменения конфигурации сооружения за счёт её отклика [85]. В [69] приведён расчёт вантовых конструкций с использованием энергетического метода.

При статическом нелинейном анализе геометрических схем вантовых мостов [52, 53] выражение полной потенциальной энергии имеет вид

$$W = \sum_{n=1}^{f} \sum_{s=1}^{6} \sum_{r=1}^{6} \left(\frac{1}{2} x_s k_{sr} x_r \right)_n + \sum_{n=1}^{p} \left(T_{\circ} e + \frac{EA}{2L_{\circ}} e^2 \right)_n - \sum_{n=1}^{N} F_n x_n.$$
 (1.4)

где f — число изгибных элементов; x_s , x_r — векторы перемещений изгибных элементов с учетом эффекта предварительного натяжения вант; k_{sr} — матрица жёсткости изгибных элементов в глобальной системе координат; р — количество вант; T_0 — усилие предварительного натяжения в ванте при предварительном натяжении; е — удлинение ванта при приложении нагрузок; E — модуль упругости; A — площадь сечения ванты; L_0 — длина недеформированного ванта;

N — общее количество степеней свободы всей системы; F_n — вектор усилий элементов прикладываемых нагрузок; x_n — вектор перемещений элементов под прикладываемой нагрузкой.

Координаты и силы вантового элемента jn натянутого и незагруженного, а также натянутого и загруженного в итерационном процессе показаны на рис. 1.10.

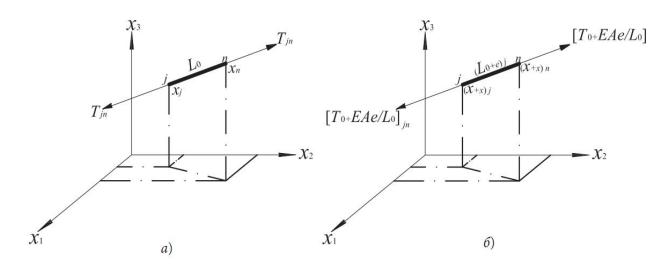


Рис. 1.10. Схемы координат и сил вантового элемента јп

(а) не загружен (б) загружен

Полное удлинение ванты выражается таким образом:

$$e_{jn} = e_{\circ} + e = \frac{1}{L_{\circ}} \left\{ \sum_{i=1}^{2} \left[\left(X_{ni} - X_{ji} \right) \left(x_{ni} - x_{ji} \right) + \frac{1}{2} \left(x_{ni} - x_{ji} \right)^{2} \right] + \frac{L_{\circ}^{2} T_{\circ}}{EA} \right\}.$$
 (1.5)

где e_0 — удлинение ванта при предварительном натяжении; i — одно из направлений перемещений, например точки n; X_{ni} , X_{ji} — координаты соответственно точек n, j по направлению i; x_{ni} , x_{ji} — перемещение соответственно точек n, j по направлению i.

1.5.2 Минимизация потенциальной энергии моста методом сопряжённых градиентов.

Процедуры анализа осуществляются до достижения равновесия конструкции с помощью итерационного процесса, чтобы минимизировать полную потенциальную энергию методом сопряжённых градиентов [43, 104, 105]. Равновесие достигается, когда полная потенциальная энергия становится

минимумом. Общая потенциальная энергия получается суммированием энергии каждого элемента.

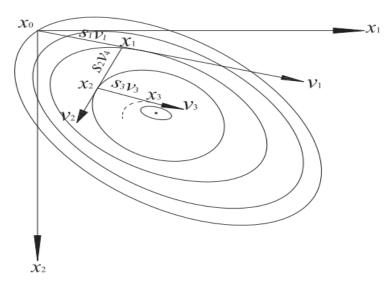


Рис. 1.11. Контурные линии на топографической карте

На рис. 1.11 схема представляет собой контурные линии на топографической карте. Все точки на любой контурной линии являются перемещениями, при которых полная потенциальная энергия W постоянная. Точка для минимальной W определяет положение равновесия загруженных элементов, условие равновесия в направлении i в точке j выражается как

$$\frac{\partial W}{\partial x_{ji}} = \left[g_{ji} \right] = 0$$

$$i = 1, 2, 3$$
(1.6)

где g_{ji} — вектор градиента поверхностной энергии; градиент g представляет вектор силы, необходимого для поддержания равновесия в пространстве перемещений x. Местоположение минимума W достигается перемещением вниз по поверхности энергии вдоль вектора спуска v на расстояние Sv, пока W не будет минимальной в рассматриваемом направлении. Метод схематично показан на рис. 1.11 и математически выражается вектором перемещения в k-й итерации:

$$[x]_{k+1} = [x]_k + S_k v_k. (1.7)$$

где $[x]_k$ — вектор перемещений на шаге итераций k; S_k — длина шага определяется расстоянием по S_k , k имеет вид: k=0, 1, 2, 3, ..., n); v_k — вектор спуска в k-й

итерации с x_k в пространстве перемещении x. В методе сопряженных градиентов, вектор спуска определяется рядом линейных комбинаций такого вида:

$$[v]_{k+1} = -[g]_{k+1} + \beta[v]_{k},$$

$$\beta_{k} = \frac{[g]_{k+1}^{T} \{[g]_{k+1} - [g]_{k}\}}{[v]_{k}^{T} \{[g]_{k+1} - [g]_{k}\}}.$$
(1.8)

где β_k — коэффициент, зависящий от вектора градиента и вектора спуска.

Дифференцируя уравнения (1.4) относительно x_s , получим

$$[g_{i}]_{n} = \sum_{n=1}^{f_{n}} \sum_{r=1}^{6} (k_{nr} x_{r})_{n} + \sum_{n=1}^{p_{n}} \left(T_{\circ} + \frac{EA}{L_{\circ}} e \right) \left[\frac{\partial e_{n}}{\partial x_{i}} \right]_{n} - [F_{i}]_{n}.$$
(1.9)

Дифференцируя первую часть уравнения (1.5) относительно x_{ii} , будем иметь

$$g_{ni} = \sum_{n=1}^{f_n} \sum_{r=1}^{6} (k_{nr} x_r)_n - \sum_{n=1}^{p_n} (t_{jn} (X_{ni} + x_{ni} - X_{ji} - x_{ji})) - F_{ni}.$$
 (1.10)

где t_{jn} — коэффициент натяжения вантового элемента jn:

$$t_{jn} = \left[\left(T_{\circ} + EA / L_{\circ} \right) / L_{\circ} \right]_{jn}. \tag{1.11}$$

Подставляя выражение (1.7) $[x]_{k+1}$ в уравнение (1.5) получим в виде выражения

$$e_{jn} = \frac{1}{L_{\circ}} \left\{ \sum_{i=1}^{2} \left[\left(X_{ni} - X_{ji} \right) \left(x_{ni} + Sv_{ni} - x_{ji} - Sv_{ji} \right) + \frac{1}{2} \left(x_{ni} + Sv_{ni} - x_{ji} - Sv_{ji} \right)^{2} \right] + \frac{L_{\circ}^{2} T_{\circ}}{EA} \right\}.$$

$$(1.12)$$

Это выражение можно упростить, если ввести обозначения

$$a_{1} = \sum_{i=1}^{2} \left[\left(X_{ni} - X_{ji} \right) + \frac{1}{2} \left(x_{ni} - x_{ji} \right) \right] \left(x_{ni} - x_{ji} \right) + L_{\circ}^{2} \frac{T_{\circ}}{EA},$$

$$a_{2} = \sum_{i=1}^{2} \left[\left(X_{ni} - X_{ji} \right) + \left(x_{ni} - x_{ji} \right) \right] \left(v_{ni} - v_{ji} \right), a_{3} = \sum_{i=1}^{2} \frac{1}{2} \left(v_{ni} - v_{ji} \right)^{2}.$$

$$(1.13)$$

Тогда,
$$e_{jn} = \frac{(a_1 + a_2 S + a_3 S^2)}{L_{\circ}}$$
.

коэффициент натяжения вантового элемента jn на шаге итераций k+1

$$(t_{jn})_{k+1} = (t_{jn})_k + \frac{EA}{(L_o^3)_{jn}} (a_1 + a_2 S + a_3 S^2)_{jn}.$$
(1.14)

Подставляя выражение (1.7) $[x]_{k+1}$ в уравнение (1.4) получим в виде выражения

$$W = \sum_{n=1}^{f} \sum_{s=1}^{6} \sum_{r=1}^{6} \left(\frac{1}{2} (x + Sv) k_{sr} (x + Sv)_r \right)_n + \sum_{n=1}^{p} \left(T_{\circ} e + \frac{EA}{2L_{\circ}} e^2 \right) - \sum_{n=1}^{N} F_n (x + Sv)_n.$$
 (1.15)

Подставляя выражение e_{jn} из уравнения (1.13) в уравнение (1.15) и выполняя необходимые умножения, приходим к полиному относительно S:

$$W = C_4 S^4 + C_3 S^3 + C_2 S^2 + C_1 S + C_2, (1.16)$$

где коэффициенты C:

$$C_{4} = \sum_{n=1}^{p} \left(\frac{EAa_{3}^{2}}{2L_{\circ}^{3}} \right)_{n}, C_{3} = \sum_{n=1}^{p} \left(\frac{EAa_{2}a_{3}}{L_{\circ}^{3}} \right)_{n},$$

$$C_{2} = \sum_{n=1}^{p} \left(t_{\circ}a_{3} + \frac{EA(a_{2}^{2} + 2a_{1}a_{3})}{2L_{\circ}^{3}} \right)_{n} + \sum_{n=1}^{f} \sum_{s=1}^{6} \sum_{r=1}^{6} \left(\frac{1}{2}v_{s}k_{sr}v_{r} \right)_{n},$$

$$C_{1} = \sum_{n=1}^{p} \left(t_{\circ}a_{2} + \frac{EAa_{1}a_{2}}{2L_{\circ}^{3}} \right)_{n} + \sum_{n=1}^{f} \sum_{s=1}^{6} \sum_{r=1}^{6} \left(\frac{1}{2}v_{s}k_{sr}v_{r} \right)_{n} - \sum_{n=1}^{N} F_{n}v_{n},$$

$$C_{\circ} = \sum_{n=1}^{p} \left(t_{\circ}a_{1} + \frac{EAa_{1}^{2}}{2L_{\circ}^{3}} \right)_{n} + \sum_{n=1}^{f} \sum_{s=1}^{6} \sum_{r=1}^{6} \left(\frac{1}{2}x_{s}k_{sr}x_{r} \right)_{n} - \sum_{n=1}^{N} F_{n}v_{n}.$$

$$(1.17)$$

Из уравнения (1.16), получим длину шага *S*:

$$S_{k+1} = S_k - \frac{\partial W/\partial S}{\partial W^2/\partial S^2}; \quad S_{k+1} = S_k - \frac{4C_4S^3 + 3C_3S^2 + 2C_2S + C_1}{12C_4S^2 + 6C_3S + 2C_2}.$$
 (1.18)

Глава 2. ЭНЕРГЕТИЧЕСКИЙ ПОДХОД ДЛЯ ОЦЕНКИ ОПТИМАЛЬНОГО ПРЕДВАРИТЕЛЬНОГО НАТЯЖЕНИЯ ВАНТ ПРИ СТАТИЧЕСКОМ АНАЛИЗЕ ВАНТОВЫХ СХЕМ МОСТОВ

2.1. Предложенный алгоритм для оценки оптимального предварительного натяжения вант

Вантовые мосты нашли широкое применение во всем мире в последние несколько десятилетий. Быстрый прогресс оправдан возможностью анализа и проектирования этого типа гибких сооружений. В работах [1, 22, 28] были усовершенствованы программы проектирования сталежелезобетонных двухпилонных автодорожных мостов с применением персональных компьютеров. Был применён инженерный метод последовательных приближений к искомому решению с целью повышения производительности труда проектировщиков, качества проектной документации и сокращения срока проектирования. В этих работах оптимизация за счёт достижения минимальной деформации по оценке оптимального предварительного натяжения вант отсутствует. В некоторых исследованиях, таких как [47, 99, 109], были проведены анализы минимизации деформации вантовых мостов по оптимизации предварительного натяжения вант. В этих статьях решение задачи основано на методике авторов (см. глава. 1, раздел 1.4.2).

В самом последнем исследовании М. Хассан, (2010) [70] отметил, что все методы оценки предварительного натяжении вант приводят к следующим выводам:

- Существующие коммерческие программные пакеты не могут использоваться непосредственно для оценки оптимального предварительного натяжения вант. Соответственно, специальный алгоритм должен быть разработан дизайнером для решения этой задачи, которая требует значительных навыков программирования.
- Оценка оптимального предварительного натяжения вант требует разработки полной численной модели моста.

- Входные и выходные данные, связанные со всеми этими методами, являются большим и утомительным трудом, включая их интерпретацию.
- Все методы являются сложными (Сунг 2006 [107]) и (Лии., 2008 [80]), поскольку они являются итерационными и требуют широкого знания многих математических и численных методов.
- Увеличение количества вант усложняет расчеты, и делает их более сложными, чтобы найти подходящее решение.

Чтобы продолжить изучение этого вопроса в этой главе, предложен алгоритм для достижения минимальной деформации вантовых мостов по оценке оптимального предварительного натяжения вант, где при минимизации энергии на каждом шаге интегрирования нелинейных дифференциальных уравнений реализован метод сопряженных градиентов

Для проверки эффективности предложенного алгоритма осуществляется также сравнение результатов, полученных в работе с результатами М. Хассан [70]

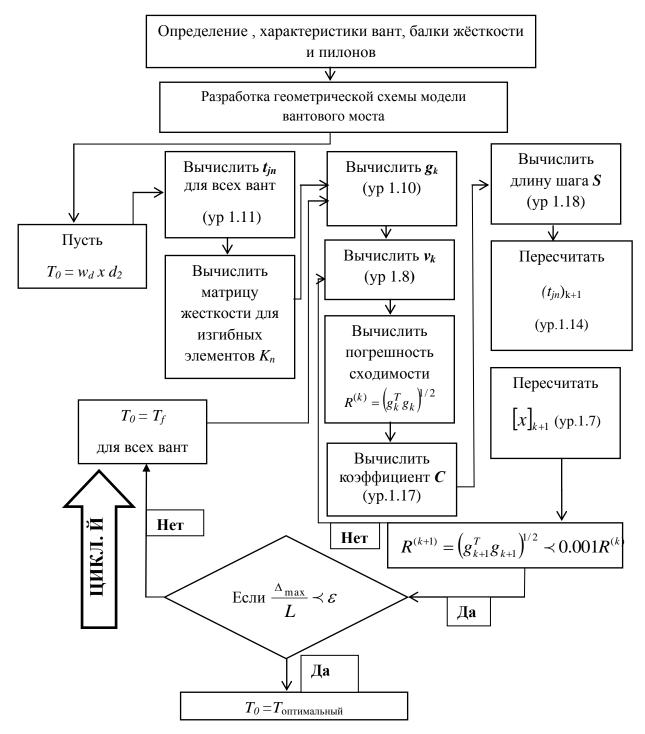


Рис. 2.1. Предложенный алгоритм для оценки оптимального предварительного натяжения вант

В предложенном алгоритме, как показано на рис. 2.1, предлагается значение предварительного (T_0) назначать начальное натяжения вант постоянными для всех вант. Натяжение, в основном, зависит от собственного веса балки жёсткости (w_d) и расстояния между вантами (d_2) . Такое предположение проводится в первом цикле итерационного процесса, чтобы избежать трудности в сходимости итераций, когда используются различные величины предварительного натяжения для каждого ванта. В каждом итерационном процессе с использованием метода сопряженных градиентов сходимость задачи проверке погрешности сходимости достигаться при минимизация потенциальной энергии для всех элементов моста осуществляется в конце итерации каждого цикла. Чтобы определить, окончательное это натяжение вант или нет, в каждом цикле значения обрабатываются предложенной в алгоритме величиной малого значения (є). Это значение получается путём деления максимального прогиба балки жёсткости в центральном пролете ($\Delta_{\rm m}$) на расстояние между пилонами (L). Необходимые циклы для достижения этой цели будут повторяться до тех пор, пока не получится желаемое значение (ε). Особенности использования метода сопряженных градиентов заключатся в том. что можно получить небольшое значение (ε), меньше чем 10⁻⁴, которое очень популярно в других процедурах алгоритмов. Преимущество этого метода особенно возрастает с увеличением пролётов мостов. В настоящем исследовании значение (ϵ) = 4×10^{-5} можно рассматривать как оптимальное значение. Однако в результатах анализа это значение может стать меньше в зависимости от геометрии и схем вант моста. Если не получаем в первом цикле оптимального предварительного натяжения каждого ванта, то во второй цикл вводится окончательные натяжения всех вант, полученные из первого цикла, предварительные натяжения второго цикла и так далее.

В предложном алгоритме, перемещение точек балки жёсткости и пилона являются переменными в оптимизационном процедуре [39].

2.2. Геометрическая схема и расчетные данные рассмотренных вариантов изучаемого моста

Мост с общей длиной 800 м состоит из трех пролётов, где центральный пролёт между двумя пилонами имеет 400 м и 200 м для двух боковых пролётов, как показано на рис. 2.2. Балка жёсткости моста из стали с шириной 20,8 м и высотой 3,2 м (рис. 2.3), где момент инерции (I_x) , момент инерции (I_y) , площадь поперечного сечения (A_d) и модуль упругости (E_d) составляют 2.199 м⁴, 48.95 м⁴, 1.325 м^2 и $2.1 \times 10^8 \text{ кH/м}^2$, соответственно. Собственный вес балки жёсткости (w_d) имеет 87.32 кН/м. Пилоны состоять из двух частей: нижняя часть под уровнем балки жёсткости состоит из двух сечений, каждый из которых имеет 7.3 м × 5 м с толщиной 0.7 м и 40 м высотой, верхняя часть пилонов имеет 6.7 м × 3 м с толщиной 0,5 м и высоте 80 м над уровнем балки жёсткости, как показано на рис. 2.4. Модуль упругости бетона для пилонов (E_c) имеет 3×10^7 кН/м². Ванты имеют постоянные площади поперечного сечения (A_c) 0.01105 м², где модуль упругости (E_{cs}) , разрушающая сила (T_{ult}) и погонный вес (w_{cs}) вант составляют 14720 кH/см², 9500 кН и 0.891 кН/м, соответственно. Расстояние между вантами вдоль верхней части пилонов имеет 2 м. Все изгибные элементы моста (балка жёсткости и пилоны) рассматриваются как 2D балочные элементы. Каждый узел балочного элемента имеет три степени свободы для вычисления матрицы жёсткости (k) и вектор градиента (д). Граничные условия основания пилонов ограничены во всех направлениях перемещения и поворота.

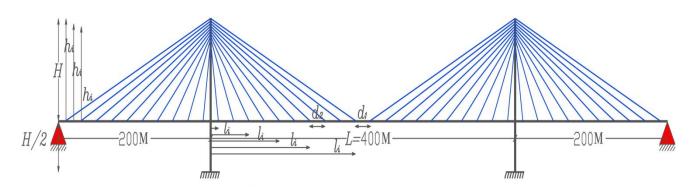


Рис. 2.2. Схема моста, система «веер»

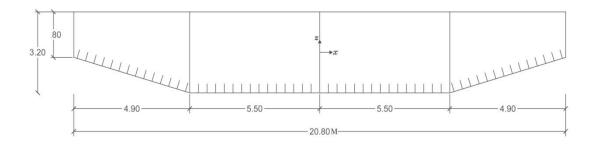


Рис. 2.3. Поперечное сечение балки жесткости

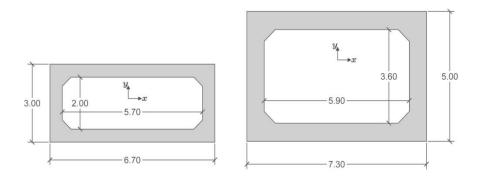


Рис. 2.4. Сечения пилона над балкой жесткости

и под ней

Мост разделяется на идеализированные элементы, где модель моста образована путём соединения этих элементов в конечном числе (см. приложение.1, пример H/L=1/5, схема веер). 2-D анализ позволит сократить вычисление в случае симметричной плоскости моста. Балка жёсткости и пилоны моделируются с помощью балочных элементов, где площади поперечного сечения и моменты инерции приняты как в соответствующих балочных элементах в модели.

В приложении 1 также представлены значения деформации моста и соответствующих натяжений вант при процедуре алгоритма, показывающие уменьшение этих значений (пример H/L=1/5, схема веер).

2.3. Виляние изменения геометрии моста на деформации изгибных элементов при выполнении процедуры алгоритма

Отношение высоты пилона относительно длины среднего пролёта моста (H/L) можно считать одним из главных геометрических факторов, который имеет

значительное влияние на деформации вантовых мостов и натяжения вант. Следовательно, этот фактор тоже влияет и на процедуру нахождения вант. В этом разделе влияние этого оптимального натяжения фактора ориентировано на вычисление деформаций моста (балка жёсткости и пилоны) и Чтобы более оценку оптимального натяжения вант. сделать глубокие исследования, прогибы балки жёсткости и перемещения пилонов представляются в рамках процедур алгоритма (при каждом цикле итерации).

2.3.1. Оценка прогиба балки жёсткости при процедуре алгоритма

В таблице 2.1 рассмотрим два варианта вантового моста. В первом варианте предложим, что $(d_1 = d_2)$, где все расстояния между вантами одинаковы, а во втором варианте принимаем расстояние между двумя вантами центрального пролета моста (d_1) значительно больше, чем (d_2) (см. рис.2.2). Проведём анализ второго варианта моста с целью проверки эффективности предлагаемого алгоритма, чтобы выяснить, влияет ли это на сходимости итераций.

Таблица 2.1

Наименование		Расстояние между вантами	Схема вант моста	высоты пилона относительно среднего пролета моста H/L			
Вариант 1	$d_1 = d_2$	20 м	веер	1/5	1/6	1/7	
Вариант 2	$d_1 >>> d_2$		веер	1/5	1/6	1/7	

Нелинейный статический анализ проводился для двух вариантов вантового моста, представленных в таблице 2.1. Оценка прогиба балки жёсткости вдоль пролёта моста получается в рамках процедуры алгоритма. Как показано на рис. (2.5, 2.6, 2.7), количество необходимых циклов для получения минимального прогиба балки жёсткости при H/L = 1/5, 1/6 и 1/7 увеличивается при варианте 2 с трёх до пяти, от четырёх до шести и с пяти до семи, соответственно. Таким

образом, вычисление сходимости каждой итерации становится сложнее при вычислении минимальной потенциальной энергии для всех элементов моста. Также можно отметить, что когда уменьшаем высоту пилона, увеличиваются необходимые циклы итерации. В середине центрального пролета $(l_i / L) = 0.5$, прогиб балки жёсткости уменьшается в каждом цикле по (ϵ). В последнем цикле, получили самый минимальный прогиб, когда находим (ϵ) меньше, чем 10^{-4} , что указывает на наличие небольшого прогиба около нуля. В целом, прогиб балки жёсткости снижается в зависимости от высоты пилона. При нелинейном анализе моста (вариант.1 и вариант.2), H/L=1/5 даёт лучшие результаты, чем H/L=1/6 и 1/7, Кроме того, сходимость итерации достигается быстрее и легче.

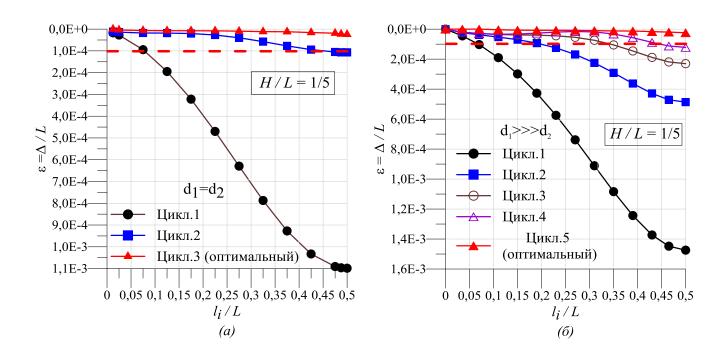


Рис. 2.5. Оценка прогиба балки жесткости (ϵ) при H/L=1/5 a) вариант 1 δ) вариант 2

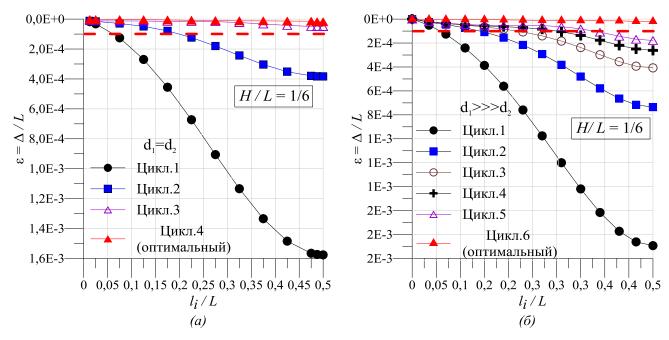


Рис. 2.6. Оценка прогиба балки жесткости (ϵ) при H/L=1/6

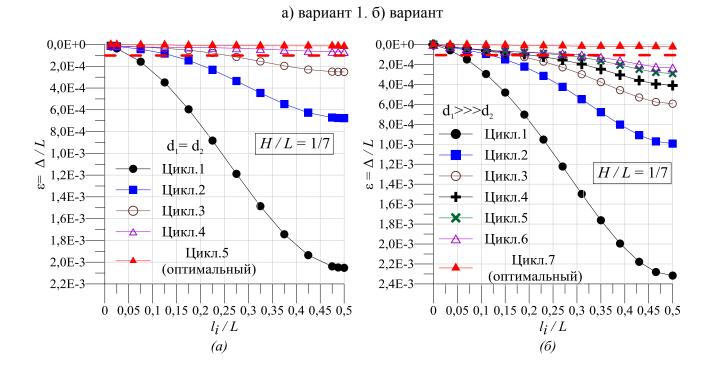


Рис. 2.7. Оценка прогиба балки жесткости (ϵ) при H/L=1/7 а) вариант 1. б) вариант 2

2.3.2. Оценка перемещения пилона при процедуре алгоритма

В процедурах алгоритма, когда уменьшаем прогиб балки жёсткости, уменьшается соответственно перемещение пилона. Перемещение точек пилона, где прикреплены ванты, вырастет и падает с другого конца ванта на балке

жёсткости. Как показано на рисунках 2.8, 2.9, 2.10, перемещение пилона (δ) при вариантах 1, 2 и при H/L=1/5 меньше, чем получения при H/L=1/6, H/L=1/7. Количество необходимых циклов для получения минимального перемещения пилона при H/L = 1/5, 1/6 и 1/7 увеличивается при варианте 2 с трёх до пяти, от четырёх до шести и от пяти до семи, соответственно, так же, как в предыдущих процедурах, чтобы получить оптимальное значение (ϵ). Результаты показывают, что перемещение пилона, где подкреплены ванты, вырастет и падает в соответствующих точках второго конца ванта на балке жёсткости. Получение минимального перемещения верха пилона (h_i/H =0.5) около нуля считается очень важным шагом при проектировании пилона, так как позволяет избежать вторичного момента, что приводит к более экономичному решению.

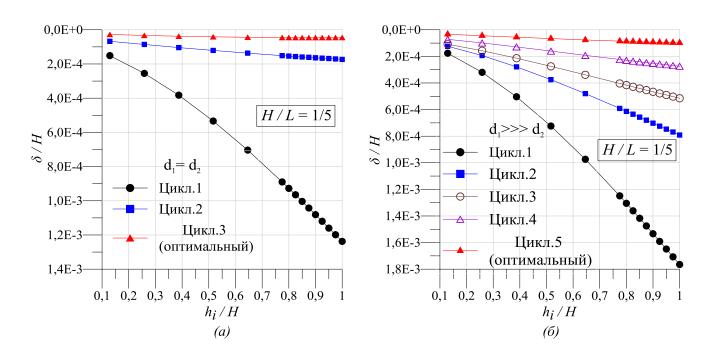


Рис. 2.8. Оценка перемещения пилона (δ/H) при H/L=1/5 а) вариант 1. б) вариант 2

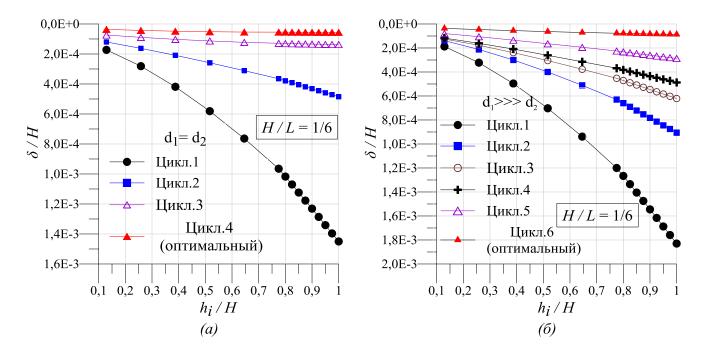


Рис. 2.9. Оценка перемещения пилона (δ/H) при H/L=1/6 а) вариант 1. б) вариант 2

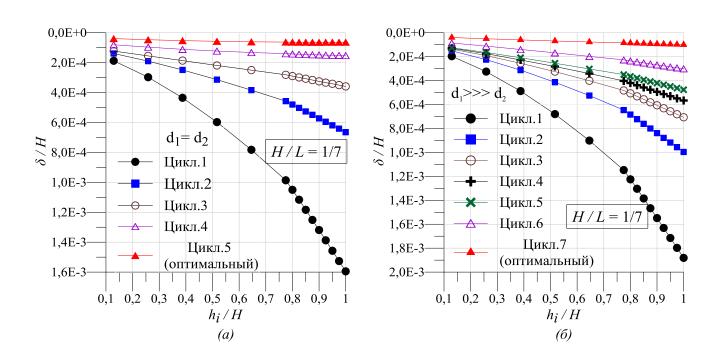


Рис. 2.10. Оценка перемещения пилона (δ/H) при H/L=1/7 а) вариант 1. б) вариант 2

2.3.3. Оценка оптимального предварительного натяжения вант в конце процесса алгоритма

Реализация метода сопряжённых градиентов при процедуре алгоритма позволяет при нахождении сходимости каждой итерации использовать хорошую оценку для $(\varepsilon) = 4 \times 10^{-5}$, меньше чем 10^{-4} , которую использовали в других популярных алгоритмах. Как показано в разделе (2.3.1), (2.3.2), получена значительная минимизация прогибов балки жёсткости и перемещений пилонов с хорошим результатом вокруг нуля. Следовательно, соответствующее натяжение каждого ванта в конце итерационного цикла может рассматриваться как 2.11 предварительное натяжение ванта. Рис. оптимальное показывает оптимальные натяжения вант, которые получаются с малыми значениями при H / L = 1/5 после трёх циклах итераций. Однако, при H / L = 1/6, H / L = 1/7, оптимальные натяжения вант имеют более высокие значения, как показано на рис. 2.12 и, следовательно, число циклов возрастает с уменьшением высоты пилонов.

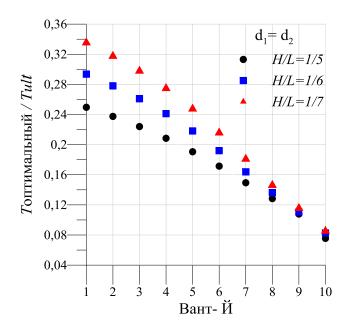


Рис. 2.11. Оценка оптимального натяжения вант при изменении *H/L*, (вариант 1)

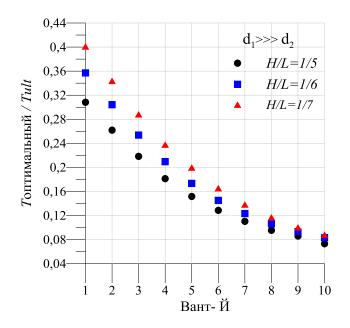


Рис. 2.12. Оценка оптимального натяжения вант при изменении *H/L*, (вариант 2)

Самый длинный вант более загружен на 12.8%, 25.6% при H/L=1/7, чем при H/L=1/6, H/L=1/5, соответственно. Оптимальные натяжения вант при d1>>>d2 (вариант 2) больше, чем в варианте 1 на 20%. Более того, количество оптимизационных циклов для уменьшения деформаций моста в этом варианте больше, чем в варианте 1. Можно тоже отметить, что желаемые предварительные натяжения увеличиваются, когда уменьшаются высоты пилонов.

2.4. Отношение перемещений балка жёсткости - пилон при нелинейном статическом анализе вантовых мостов

На рис. 2.13 показано отношение перемещений балка жёсткости - пилон с разными величинами H/L для двух изучаемых вариантов моста.

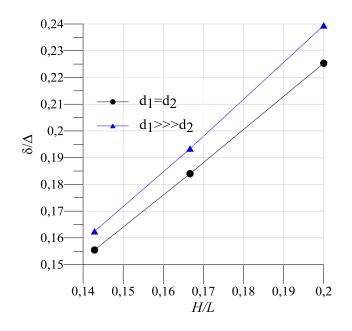


Рис. 2.13. Отношение перемещений балка жёсткости - пилон при изменении Н/L

На рис.2.13 приведены результаты только первого оптимизационного цикла в процедурах алгоритма, чтобы избежать малых значений. С использованием линейной регрессии впервые предложено уравнение для нахождения соотношения между перемещением балки жёсткости и пилона с помощью двух основных параметров, (H/L) и прогиба балки жёсткости. Коэффициент детерминации $R^2 = 0.998$

$$\delta = \left[1.35 \cdot \left(\frac{H}{L} \right) - 0.03 \right] \cdot \Delta \tag{2.1}$$

Чтобы проверить эффективность предложенного уравнения, исследование продолжается в разделе (2.7).

2.5. Виляние схемы вант на деформации изгибных элементов моста при процедуре алгоритма

2.5.1. Оценка прогиба балки жёсткости при применении разных схем вант

Выбор схемы вант считается вторым важным фактором, который участвует в определении деформаций и натяжении вант при расчётах вантовых мостов. Исследование расширяется, чтобы включить три известных схемы вант (арфа, веер и радиальная) при анализе изучаемого моста (вариант 1, вариант 2).

Рассматриваемые схемы вант показаны на рис. 2.14. Принимаем высоты пилонов относительно среднего пролета моста (H/L) = 1/5, как пример при исследовании. Расстояние между вантами вдоль верхней части пилонов 7 м, 2 м, соответственно для арфы и веер систем.

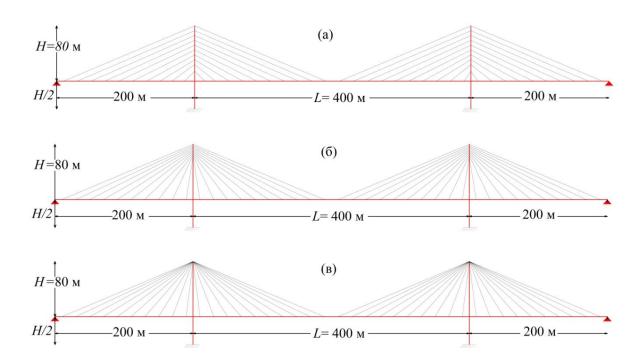


Рис. 2.14. Схемы расположения вант, а- арфа, б-веер, в- радиальная

Нелинейный статический анализ изучаемого моста (вариант.1, вариант 2) осуществляется для каждой схемы. Рис 2.15 а, б, в показывает прогиб балки жёсткости вдоль пролёта моста (вариант.1). Сравнение трёх систем, представленных при процедуре алгоритма, даны для оптимизационного цикла итерации.

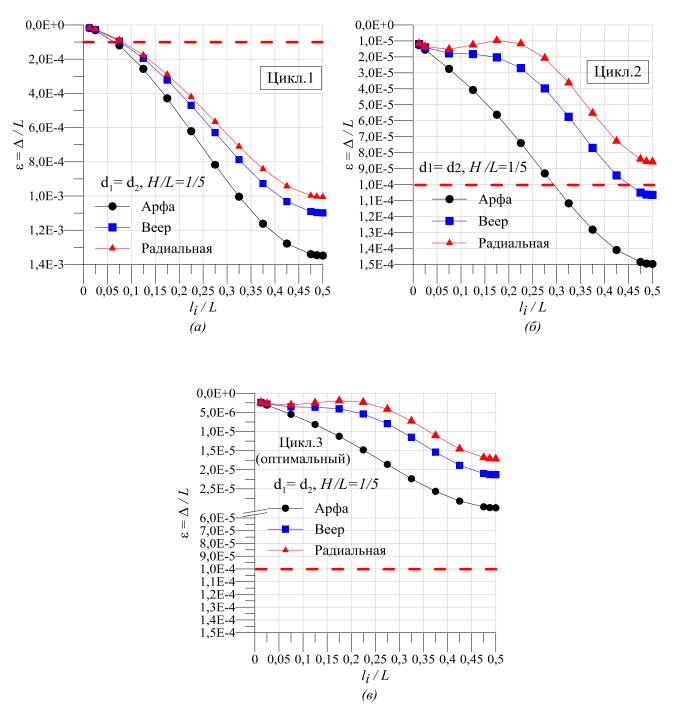
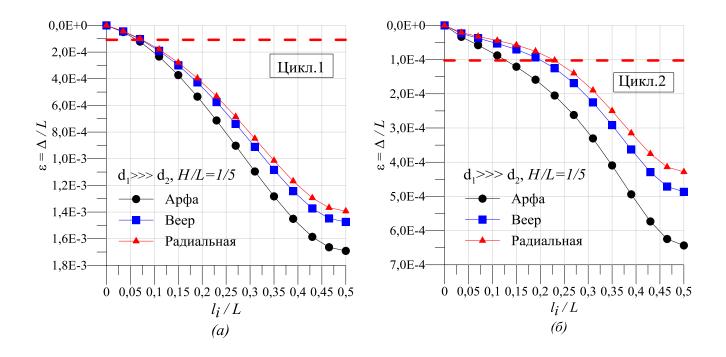
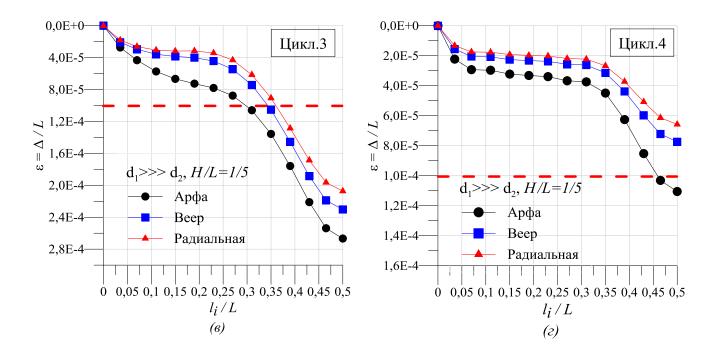




Рис.2.15. Оценка прогиба балки жесткости (ϵ) при применении разных схем вант, H/L=1/5, вариант 1. а) цикл 1. б) цикл 2. в) цикл 3

Видно, что при использовании радиальной схемы вант получаем наименьший прогиб в каждом оптимизационном цикле. Прогибы балки жёсткости очень близки при радиальной и веер-образной схемах. Однако прогиб балки жёсткости увеличивается при использовании схемы арфа. При варианте 2 сходимость анализа становится сложнее. Сложность обусловлена тем, что при

вычислении минимальной потенциальной энергии для всех элементов моста, число циклов увеличивается до пяти, как показано на рис.2.16.

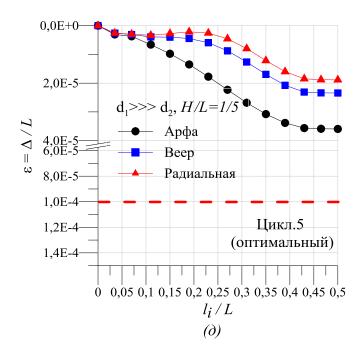


Рис. 2.16. Оценка прогибов балки жесткости (ϵ) при применении разных схем вант, H/L=1/5, вариант 2

а) цикл 1. б) цикл 2. в) цикл 3. г) цикл 4. д) цикл 5

На рисунках 2.15, 2.16 отметим, что последний оптимизационный цикл позволяет получить очень малые величины вокруг нуля для прогиба балки жёсткости. Особенностью предлагаемого алгоритма с использованием методики минимизации (метод сопряжённых градиентов) появляется возможность уменьшать вертикальные деформации балки жёсткости моста таким образом, что с (ϵ) <<< 10^{-4} даже при вариант 2, при d_1 >>> d_2 .

2.5.2. Оценка перемещения пилона при применении разных схем вант

Чтобы показать роль применения разных схем вант на изменение перемещения пилона, представляем в примере только результаты первого цикла итерации, как адекватной иллюстрации при процедуре оптимизационного алгоритма. На рис 2.17 видно, что перемещения пилона при схеме арфа больше, чем перемещения, полученные при других схемах вант. Кроме того, перемещения пилона в варианте 2 больше по сравнению с перемещениями, полученными в варианте 1. В итоге результатов анализа радиальная схема вант оказалась наиболее рациональной по деформациям.

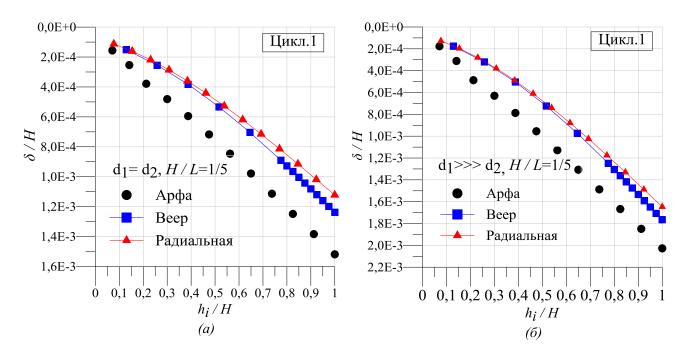


Рис. 2.17. Оценка перемещения пилона (δ/H) при H/L=1/5, цикл 1 а) вариант 1. б) вариант 2

2.5.3. Оценка оптимального предварительного натяжения вант при применении разных схем вант

Оптимальное предварительное натяжение каждого ванта меняется в зависимости от схемы вант. Рис. 2.18 показывает, что самый длинный вант более загружен при схеме арфа на 5%, 7%, чем при схемах веер и радиальная, соответственно. Поскольку при варианте 1 расстояние между вантами одинаковы, то оптимальные предварительные натяжения для каждого ванта являются близкими и нет большой разницы в их величинах. Однако, при варианте 2, где d1 >>> d2, как показано на рис 2.19, можно заметить значительную разницу между величинами предварительного натяжения вант. Поэтому перераспределение натяжения между вантами осуществляется в каждом оптимизационном цикле, чтобы сделать натяжные вант более однородными и гладкими. На рисунках 2.18, 2.19 оптимальные предварительные натяжения вант проиллюстрированы относительно к разрушающей сил вант (T_{ult})

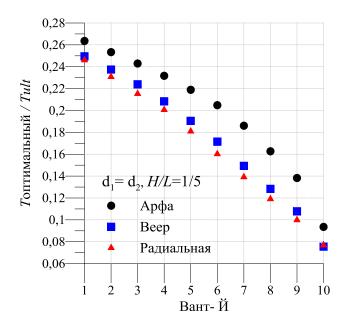


Рис.2.18. Оценка оптимального натяжения вант при применении разных схем вант, (вариант 1)

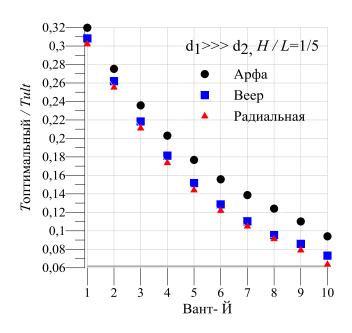


Рис.2.19. Оценка оптимального натяжения вант при применении разных схем вант, (вариант 2)

2.6. Достоверность результатов предлагаемого алгоритма

Для того чтобы проверить эффективность предложенного алгоритма при оценке оптимальных натяжений, осуществляется сравнение между его результатами и результатами одного из новейших алгоритмов. Приводится

Таблица 2.2

сравнение результатов, полученных с помощью метода конечных элементов (КЭ) с результатами, которые получены с помощью энергетического метода (ЭМ).

Сравнение фокусируется на оценке оптимального натяжения вант и деформаций моста (балки жёсткости и перемещений пилонов). В своей диссертации [70] Хассан М. (2010) разрабатывал новый алгоритм, используя Всплайн функцию с использованием метода конечных элементов при нелинейном статическом анализе моста (см. глава.1, раздел 1.4.3). В этом алгоритме кривые Всплайн выбирают так, чтобы представить предварительное натяжение в каждом Согласно алгоритму Хассана, ванте. ДЛЯ получения оптимального первоначального натяжения в вантах, он рассматривал пять вариантов, где из каждого варианта получал оптимальное натяжение вант в зависимости от выбора контрольных точек p, которые принимаются в процентах от максимальной разрушающей силы вант.

Координаты контрольных точек В-сплайна

Вариант.1	$(0, 0.5T_{ult}), (0.25l, 0.5T_{ult}), (0.75l, 0.5T_{ult}), (0, 0.5T_{max})$
Вариант.2	$(0,T_{ult}), (0.25 l, T_{ult}), (0.66 l, T_{ult}), (l, T_{ult})$
Вариант.3	$(0,T_{ult}), (0.4 l, T_{ult}), (0.8 l, T_{ult}), (l, T_{ultx})$
Вариант.4	$(0, 0.5T_{ult}), (0.4 l, 0.5T_{ult}), (0.8 l, 0.5T_{ult}), (l, 0.5T_{ult})$
Вариант.5	$(0, 0.5T_{ult}), (0,25 l, 0.5T_{ult}), (0.66 l, 0.5T_{ult}), (l, 0.5T_{ult})$

Для того, чтобы провести сравнение между результатами двух алгоритмов, модель моста Хассана анализируется с использованием концепции минимизации потенциальной энергии по его материалам и по результатам предлагаемого алгоритма для достижения минимума деформации моста и оптимального натяжения вант.

2.6.1. Геометрическая схема и расчетные данные изучаемого моста

Мост общей длиной 541.8 м состоит из трёх пролетов, где центральный пролет 285.6 м между двумя пилонами и двух боковых пролётов, каждый длиной 128.1 м, как показано на рис. 2.20. Балка жёсткости из железобетона имеет

толщину 0.23 м, ширину 14.20 м и 3.0 м высоту, как показано на рис. 2.21-а, где площадь поперечного сечения (A_d) , и модуль упругости (E_d) составляют 0.60 м², и 2×10^8 кН/м², соответственно. Собственный вес балки жёсткости (w_d) имеет 165.2 кН/м. Сечения пилона показаны на рис. 2.21-б. Модуль упругости для бетона (E_c) 3×10^7 кН/м². Ванты имеют постоянные площади поперечного сечения (A_c) 0.0176 м², где модуль упругости (Ecs), разрушающая сила (T_{ult}) , погонный вес (w_{cs}) вант составляют 2.1×10^8 кН/м², 1.6×10^6 кН/м², and 1.36 кН/м, соответственно.

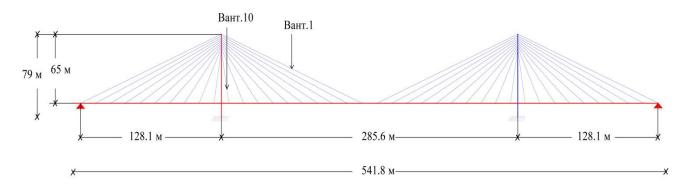


Рис. 2.20. Схема моста и порядок вант, Хассан 2010

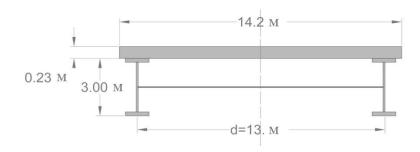


Рис. 2.21-а. Поперечное сечение балки жесткости моста, Хассан 2010

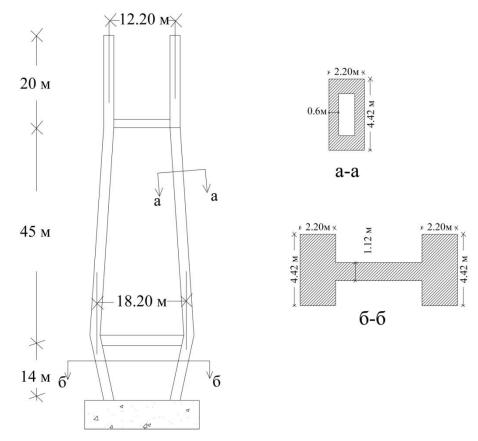


Рис. 2.21-б. Поперечное сечение пилона, Хассан 2010

2.6.2. Сравнение двух алгоритмов для оценки деформаций моста

Рассмотрим результаты нелинейного статического анализа моста с использованием двух алгоритмов (предлагаемый алгоритм и алгоритм Хассана). Рис. 2.22 показывает, что без учёта предварительного натяжения вант при расчёте моста, максимальный вертикальный прогиб балки жёсткости с использованием энергетического метода (результаты автора) и метода конечных элементов (результаты Хассана, 2010) 0.495 м, 0.519 м, соответственно. Однако, с учётом предварительного натяжения вант максимальный прогиб уменьшается до 0.0053 м и 0.013 м, соответственно.

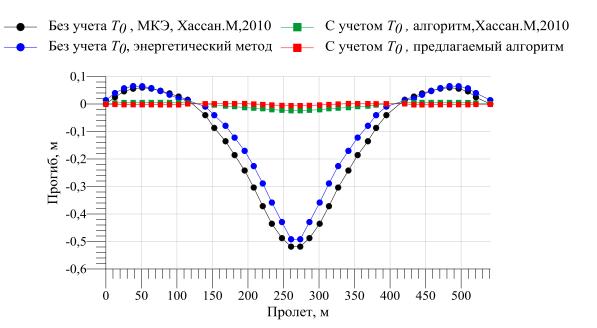


Рис. 2.22. Прогиб балки жесткости

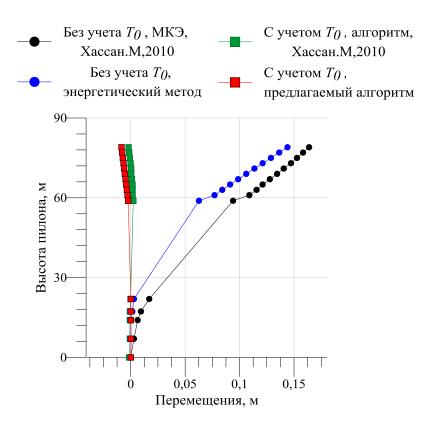


Рис. 2.23. Перемещение пилона

Без учёта предварительного натяжения вант максимальное перемещение пилона имеет 0.134 м, 0.1634 м с использованием энергетического метода (результаты автора) и метода конечных элементов (результаты Хассана 2010), как

показано на рис.2.23, и с учётом предварительного натяжения вант максимальное перемещения уменьшается до -0.0047 м и 0.0082 м, соответственно.

2.6.3. Сравнение двух алгоритмов для оценки оптимального предварительного натяжения вант

Для иллюстрации прямого преимущества предложенного алгоритма рис. 2.24, рис. 2.25 представлены, чтобы показать процедуры каждого алгоритма для достижения оптимального натяжения вант. Как показано на рис. 2.24, требуется проводить пять итераций каждого предложного варианта при процедуре алгоритма Хассана, чтобы находить подходящую кривую В- сплайн для достижения оптимального предварительного натяжения каждого ванта.

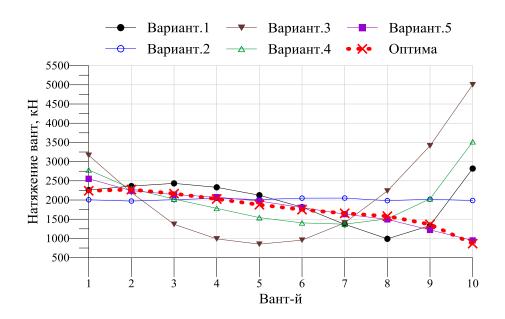


Рис. 2.24. Оценка оптимального натяжения вант при процедуре алгоритма Хассана, 2010

Можно отметить, что в разных изучаемых вариантах есть значительная разница между оптимальными натяжениями, полученными в последней итерации для нахождения подходящей кривой В- сплайн и начальными другими вариантами. На рис. 2.25, показаны процедуры предложенного алгоритма, где требуются только три цикла для получения оптимального натяжения вант, которые удовлетворяют минимальным деформациям моста.

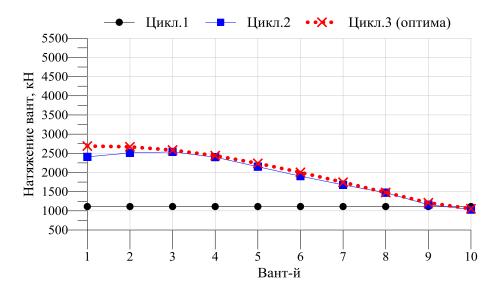


Рис.2.25. Оценка оптимального натяжения вант при процедуре предлагаемого алгоритма

2.7. Достоверность предлагаемого уравнения для нахождения отношения перемещений балка жесткости - пилон при нелинейном статическом анализе вантовых мостов

Чтобы проверить эффективности предложенного уравнения (ур. 2.1) в разделе (2.4), в таблице 2.3 показано сравнение между величинами перемещения пилона, полученными из различных исследований, включая модель, полученную с помощью предлагаемого уравнения. В этом уравнении прогнозируемые величины перемещения пилона получаются, если H/L и прогиб балки жёсткости известны. Максимальный прогиб балки жёсткости и перемещения пилона в двух точках крепления ванта используются в предлагаемом уравнении, которое получено в итоге рассмотрения результатов разных схем моста. Схемы моста показаны в разделе (2.6.1).

 Таблица 2.3

 Сравнение между величинами перемещения пилона, полученными из различных исследований

Схема	Схемы располож- ения вант	Дефор: моста		δ из ур.	Точность ±м	
		Δ	δ	2.1	<u>+</u> .iVI	
1. H=80 m, L=400 m,d ₁ =d ₂	Арфа	0.5394	0.1215	0.129	0.0075	
2. H=80 m, L=400 m,d ₁ =d ₂	Веер	0.4394	0.0990	0.105	0.006	
3. H=80 m, L=400 m,d ₁ =d ₂	Радиальная	0.3990	0.0898	0.0957	0.0059	
4. $H=80 \text{ m}, L=400$ $m, d_1>>>d_2$	Арфа	0.6766	0.1622	0.1623	0.0001	
5. H=80 m, L=400 m ,d ₁ >>>d ₂	Beep	0.5897	0.1412	0.1415	0.0003	
6. H=80 m, L=400 m ,d ₁ >>>d ₂	Радиальная	0.5573	0.1317	0.1337	0.002	
7. H=65 m, L=285.6m	Веер	0.519	0.1634	0.1439	-0.0195	
8. H=65 m, L=285.6m	Веер	0.495	0.134	0.137	0.003	
9. H=39.46 m, L=200 m	Арфа	0.264	0.066	0.062	-0.004	

В таблице 2.3;

Схемы моста (1 до 6), рассмотрены в разделе (2.5).

Схемы моста (7,8), рассмотрены в разделе (2.6)

Схема 9 [84]

Как показано в таблице 2.3, предлагаемое уравнение даёт хорошую оценку с малыми значениями ошибок.

Выводы

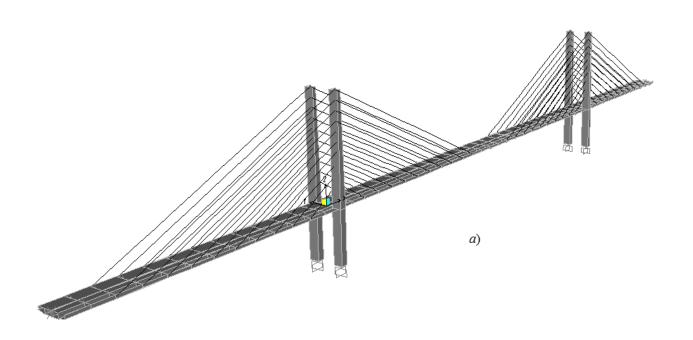
Цель этой главы заключается в создании алгоритма для оценки оптимального натяжения вант и деформации моста, основанных на минимизации общей потенциальной энергии элементов моста с помощью метода сопряженных градиентов. Для этой цели составлены алгоритм и программа на языке ФОРТРАН. Ключевые выводы:

- Прогиб балки жёсткости и перемещения пилона значительно уменьшались при каждом цикле процесса предлагаемого алгоритма и получались в последнем цикле около нуля, где потенциальная энергия всех элементов минимальна.
- Получено небольшое значение (ϵ), меньше чем 10^{-4} , которое очень популярно в других процедурах алгоритмов.
- Высота пилона относительно среднего пролёта моста (H/L) имеет очень важную роль в определении деформации и натяжения вант. В этой главе, H / L=1/5 даёт лучшие результаты, чем H / L=1/6, 1/7. Кроме того, сходимость итерации достигается быстрее и легче.
- В итоге результатов анализа радиальная схема вант оказалась наиболее рациональной по деформациям. Ванты оказались более загружены при схеме арфа, чем при схеме веер и радиальной схемах. Таким образом, схема арфа является менее подходящей, чем веер и радиальная схемы, особенно для большепролетных вантовых мостов.

- Результаты, полученные с помощью энергетического метода, имеют хорошие показатели по сравнению с методом конечных элементов.
- Предлагаемый алгоритм может быть более удобен для применения в анализе, чем алгоритм Хассана, 2010, в связи с многократным расчётом, чтобы получить подходящую кривую В-сплайн, для определения оптимального предварительного натяжения вант. В итоге анализа, предложенный алгоритм дает лучшие результаты и более удобен в расчетах в сравнении с результатами В-сплайн.
- Предложена новая универсальная зависимость между прогибами балки жёсткости и пилонами, необходимую при предварительном расчёте по деформациям вантовых мостов.
- При (d₁>>>d₂), сходимость итерация осуществляется без появлении проблем во время запущенного процесса программы.

Результаты этой главы были опубликованы в [33, 34, 35, 36, 83,93].

Глава 3. СВОБОДНЫЕ КОЛЕБАНИЯ И ВЕТРОВОЙ РЕЗОНАНС ВАНТОВЫХ МОСТОВ


3.1. Определение частот свободных колебаний вантовых мостов

Определение собственных частот и форм колебаний вантовых мостов рассматривается как фундаментальный шаг в анализе таких конструкций при решении проблемы ветрового резонанса. Колебания вантовых мостов становятся преобладающая опасными, когда частота возбуждения находится непосредственной близости от собственной частоты структурной системы. Определение частот свободных колебаний вантовых мостов с помощью различных программ МКЭ было изучено многими авторами в литературе [10, 13, 56, 61]. Учитывая сложности при моделировании таких конструкций, в разделе (3.2) предложен аналитический расчёт с целью экономии времени в процессе моделирования моста и верификации результатов численного метода МКЭ. Этот расчёт, основанный на свойствах энергетического метода, учитывает влияние продольных усилий в балке жёсткости. Численный анализ проведён с использованием SAP 2000.

3.1.1. 3D моделирование вантовых мостов с различными схемами вант с помощью SAP 2000 для определения частот свободных колебаний. (Численный метод)

Вычисление частот собственных колебаний, выполненное в этом разделе, реализует 3D модели вантового моста с различными схемами вант (арфа, веер и радиальная). Модель моста рассчитывается при собственном весе и при оптимальном натяжении вант, вычисленными в результате нелинейного статического анализа с помощью предложенного алгоритма в предыдущей главе. Мост моделируется как трёхмерная конечно-элементная модель. Все свойства моста приведены выше (см. глава 2, раздел 2.2). Расстояние между вантами вдоль балки жёсткости 16 м (вариант.2) и *H/L*=1/5. Модель моста со всеми свойствами показана на рис 3.1.а. (пример схема арфы).

При моделировании моста пилоны и балки жёсткости рассматриваются как трёхмерные балочные элементы. Каждый узел балочного элемента имеет шесть степеней свободы, перемещение по осям x, y и z, а также вращение вокруг осей x, y и z. Ванты моделируются как трёхмерные стержневые элементы, в которых учитывается только натяжение. Каждый узел стержневого элемента имеет три степени свободы: перемещение по осям x, y и z. Балка жёсткости также моделируется из балочных элементов, соединенных между собой связями, как показано на рис.3.1, б. Крепления вант и цепочек балки жёсткости связаны безмассовыми горизонтальными жёсткими связями для достижения соответствующего расстояния вант до центра жёсткости балки. [116].

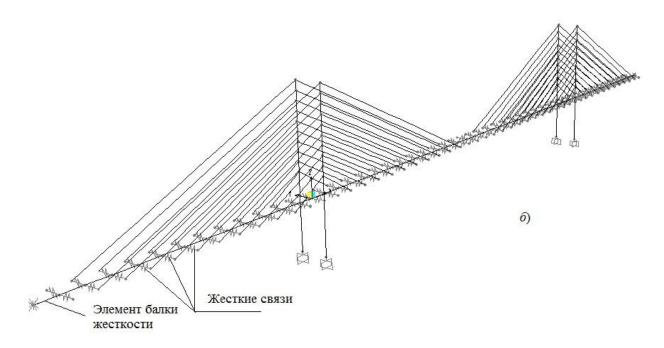


Рис.3.1. a) 3D модель вантового моста б) КЭ модель вантового моста

Моделирование балки жёсткости, как показано на рис. 3.1, б также используется в некоторых исследованиях [49, 50, 66, 91, 121]. КЭ модель, как показано на рис.3.1, также построена для «веер» и радиальной схем. Частоты собственных колебаний моста определены с использованием известной американской программы *SAP* 2000 при решении уравнения движения, которое выражается в матричной форме следующим образом [59]

$$M \cdot \ddot{x} + C \cdot \dot{x} + k \cdot x = p \tag{3.1}$$

Где M - массовая матрица; K - матрица жёсткости изгибных элементов в глобальной системе координат; x- вектор перемещений; \ddot{x} - соответствующий вектор ускорения. Для расчета собственных частот и форм колебаний не учитывается затухание C=0, учитывается только собственный вес конструкций. Вектор усилий прикладываемых нагрузок p=0. В итоге

$$M \cdot \ddot{x} + k \cdot x = 0 \tag{3.2}$$

Предположим, что вибрация будет в виде гармоники,

$$x = A\cos\omega t \tag{3.3}$$

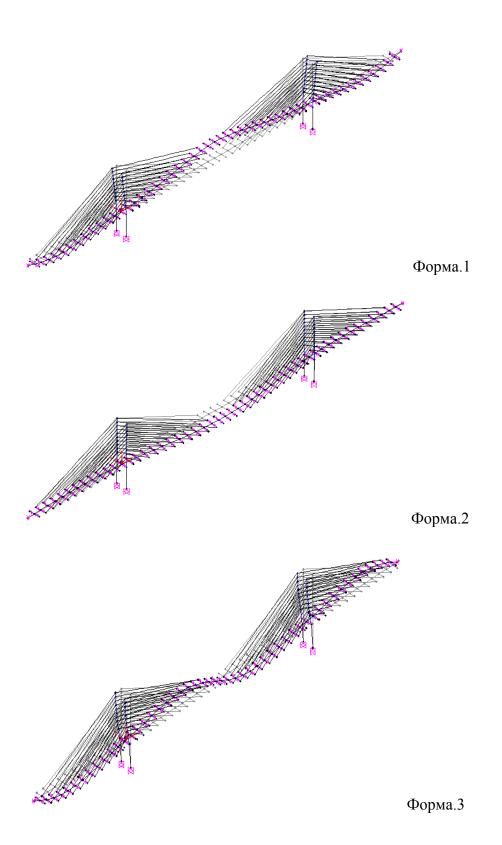
Подставляя x и \ddot{x} (ур. 3.3) в (ур.3.2) получим;

$$\left(-M\cdot\omega^2 + K\right)\cdot A\cos\omega t = 0 \tag{3.4}$$

Тогда [$K - \omega^2 M$] равен нулю;

$$|K - \lambda M| = 0 \tag{3.5}$$

где $\lambda = \omega^2$ Если n порядок матриц, то результаты уравнения с полиномом порядка n, должен иметь n корней: ω^2_1 , ω^2_2 ,....., ω^2_n . Это задача на собственные значения, решением которой являются собственными значении λ_i , и соответствующий собственный вектор x_i . Собственные значения представляют круговые частоты модели моста $\omega_i = \sqrt{\lambda_i}$, а собственные вектора представляют соответствующие формы колебаний.


3.1.2. Определение частот свободных колебаний для разных схем вантовых мостов.

Формы колебаний и связанные с ними частоты и периоды колебаний показаны на рис 3.2, 3.3, 3.4. Таблица 3.1 суммирует периоды и частоты колебаний для изучаемого моста с различными схемами вант.

Таблица 3.1 Частоты и периоды колебаний изучаемого моста, имеющего три различные схемы вант.

~ _	Арфа			Веер			Радиальная		
Порядок формы	Частота (Гц)	Период (с)	Форма колеба- ний	Частота (Гц)	Период (с)	Форма колебан ий	Частота (Гц)	Период (с)	Форма колебан ий
1	0.360	2.774	И	0.357	2.794	И	0.354	2.824	И
2	0.392	2.547	Γ	0.390	2.559	Γ	0.390	2.564	Γ
3	0.492	2.031	И	0.525	1.902	И	0.527	1.897	И
4	0.814	1.227	И	0.890	1.123	И	0.903	1.107	И

5	0.920	1.075	К	0.944	1.058	К	0.941	1.062	К
И - изгибная форма, Г- горизонтальная форма									
К - кручение									

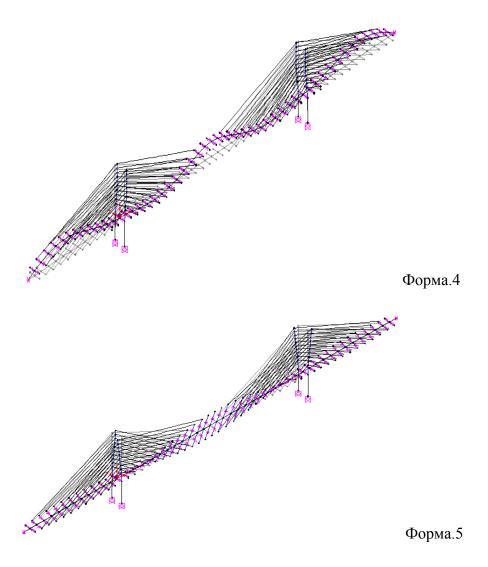
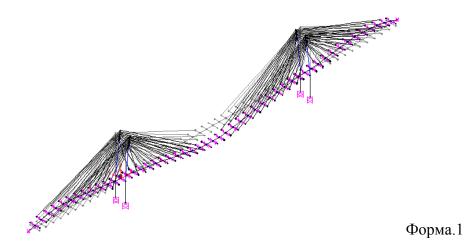
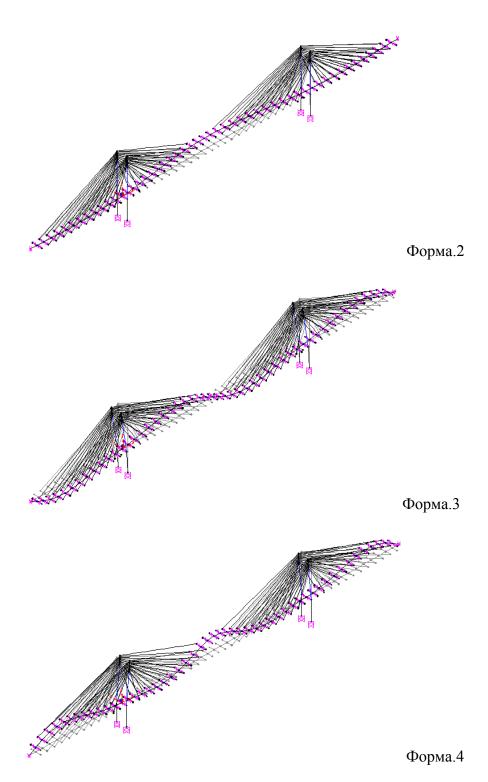




Рис. 3.2. Формы колебаний вантового моста (Арфа)

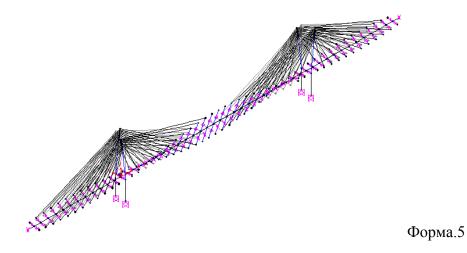
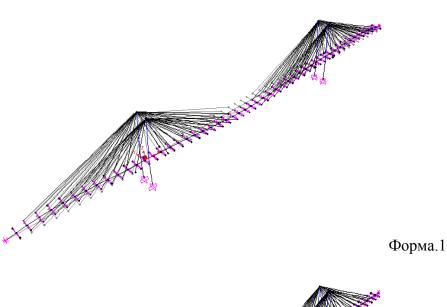
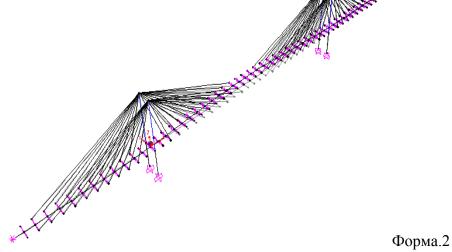




Рис. 3.3. Формы колебаний вантового моста (Веер)

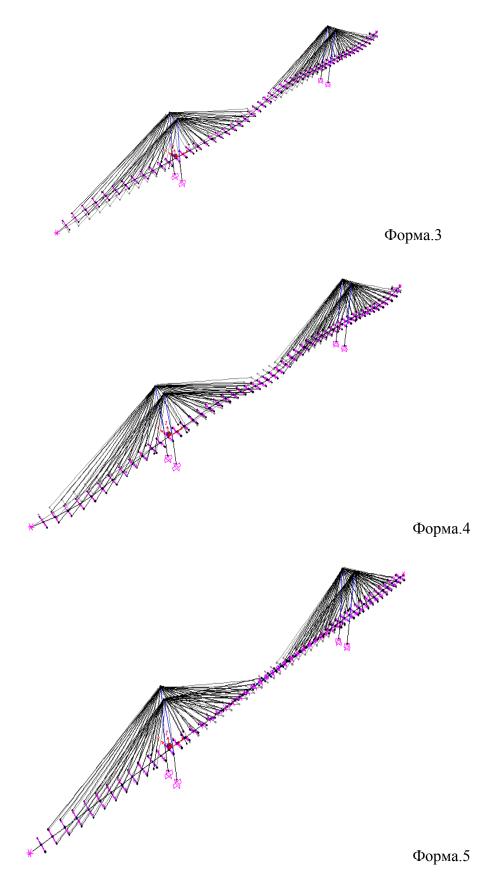


Рис. 3.4. Формы колебаний вантового моста (Радиальная)

Как показано на рис 3.2, 3.3 и 3.4, основная форма колебаний имеет изгибный вид и вертикальное движение балки жёсткости для трёх схем вант моста. Первая крутильная форма является пятой для всех схем. Для более низких форм, от 3 до 5, собственные частоты схемы арфа ниже, чем полученные в веер и радиальной схемах. Таким образом, схема арфа имеет крутильную форму при более низкой частоте. Собственные частоты колебаний близки для различных схем вант.

3.2. Приближенная оценка достоверности результатов частот свободных колебаний энергетическим методом. (Аналитический метод)

3.2.1. Определение низшей частоты горизонтальных свободных колебаний

Несмотря на очевидную структурную сложность вантовых мостов, можно развить аналитическое решение для вычисления частоты свободных колебаний. Предлагаемое решение является полезным в стадии предварительного динамического расчета вантовых мостов с целью определения области спектра предполагаемых частот колебаний.

Допустим, что ванты относительно лёгкие, поэтому будем пренебрегать их влиянием. Учтём только изгиб балки жёсткости и наличие продольных сил. Для решения задачи используем энергетический метод. Выражения потенциальной и кинетической энергий имеют вид:

$$\Im = \frac{1}{2} \int_{0}^{l} E_{\delta} I_{y\delta} \left[\frac{\partial y^{2}(x,t)}{\partial x^{2}} \right]^{2} dx - \frac{1}{2} \int_{0}^{l} N(x) \left[\frac{\partial y(x,t)}{\partial x} \right]^{2} dx,
K = \frac{1}{2} \int_{0}^{l} m(x) \left[\frac{\partial y(x,t)}{\partial t} \right]^{2} dx.$$
(3.6)

Зададимся перемещением как для шарнирно опёртой балки.

$$y(x,t) = a_1 \sin \omega t \sin(\pi/l)x. \tag{3.7}$$

Жёсткость балки на изгиб и масса - постоянные величины, поэтому потенциальную энергию изгиба и кинетическую энергию вычислим сразу, подставив в (3.6) выражение (3.7).

$$\mathcal{J}_{u3e.} = \frac{1}{2} \int_{0}^{l} E_{\delta} I_{y\delta} a_{1}^{2} \frac{\pi^{4}}{l^{4}} \sin^{2} \omega t \cdot \sin^{2} \frac{\pi}{l} x dx = \frac{1}{2} a_{1}^{2} \frac{\pi^{4}}{l^{4}} \sin^{2} \omega t_{\delta} \cdot E_{\delta} I_{y\delta} \frac{l}{2}.$$

$$K = \frac{1}{2} \int_{0}^{l} m a_{1}^{2} \omega^{2} \cos^{2} \omega t \cdot \sin^{2} \frac{\pi}{l} x dx = \frac{1}{2} m a_{1}^{2} \omega^{2} \cos^{2} \omega t \frac{l}{2}.$$

Продольные силы изменяются по длине балки дискретно, оставаясь постоянными на отдельных участках. Вычислим их влияние, используя второй член из (3.6), но меняя пределы интегрирования. Расчёт из-за симметрии моста можно выполнить лишь для половины моста. С этой целью натяжения вант с двух сторон балки спроектируем на горизонтальное направление и проинтегрируем по каждому участку. Вычисления удобно свести в табл. 3.2 (натяжение вант основано на предлагаемом алгоритме (глава.2, раздел 2.5.3). В этом разделе рассматривается вантовый мост (H/L=1/5, вариант.2, радиальная схема).

Таблица 3.2

№ вант	Натяжение вант х 2, N_i , кН	Угол. град. α _i	$N_i \cos \alpha_i$, к H	$ΣN_i$ cos $α_i$, κΗ	l_1 , M	l_2 , M	Значение для (ур3.8)
1	6685,0	24,90	6063,59	6063,56	156	172	49354
2	4821,8	27,14	4290,89	10354,43	140	156	84280
3	4166,0	29,70	3618,72	13973,14	124	140	113730
4	3559,6	32,82	2991,41	16964,56	108	124	138080
5	3032,4	36,52	2436,99	19401,55	92	108	157920
6	2593,6	41,00	1967,41	21358,97	76	92	173850
7	2234,2	46,50	1537,91	22896,88	60	76	186370
8	1939,0	53,10	1164,21	24061,09	44	60	195850
9	1666,2	61,18	803,21	24864,30	28	44	202390

10	1323,2	70,70	437,34	25301,63	0	28	360400
							Σ1662224

Продольные силы изменяются по длине балки дискретно, оставаясь постоянными на отдельных участках. Вычислим их влияние, используя второй член из (3.6)

$$\frac{1}{2} \mathcal{I}_{N} = \frac{1}{2} a_{1}^{2} \sin^{2} \omega t \frac{\pi^{2}}{l^{2}} \sum_{i} N_{i} \int_{l_{1}}^{l_{2}} \cos^{2} \frac{\pi}{l} x dx. \quad N_{i} \int_{l_{1}}^{l_{2}} \cos^{2} \frac{\pi}{l} x dx = N_{i} \left[\frac{1}{2} x + \frac{l}{4\pi} \sin \frac{2\pi}{l} x \right]_{l_{1}}^{l_{2}}. \quad (3.8)$$

Далее, на основании энергетического метода, приравняем максимальные значения энергий и, сократив на a_1^2 , получим

$$\frac{1}{2}E_{\delta}I_{y\delta}\frac{\pi^4}{l^4}\cdot\frac{l}{2}-2\frac{1}{2}\frac{\pi^2}{l^2}1662224=\frac{1}{2}m\omega^2\frac{l}{2}. \quad \text{Отсюда; } \omega^2=\frac{E_{\delta}I_{y\delta}}{m}\frac{\pi^4}{l^4}-\frac{4\pi^2}{ml^3}1662224.$$

Подставим числовые значения

$$\omega^2 = \frac{2,1 \cdot 10^8 \cdot 48,96}{8,9} \left(\frac{\pi}{l}\right)^4 - \frac{4\pi^2}{8,9 \cdot 400^3} 1662224 = 4,39572 - 0,11521 = 4,28051 \text{ c}^{-2}$$

$$\omega = 2,06894 \text{ c}^{-1}; \ \varphi = 0,32928 \ \Gamma\text{ц}.$$

При большом числе вант ступенчатую эпюру продольных сил в балке можно заменить треугольной, от опоры до середины пролета. Площадь треугольной эпюры $A_{\rm Tp.}=0.5~N_0~l/2=A_{\rm np.}=\Sigma~N_i~l_i$. Значения N_i приведены в табл. 3.2, а $l_i=d_2$ на рис. 2.2 (см. глава. 2, раздел. 2.2). $N_0=32674.7~{\rm kH}$. При начале координат на левой опоре продольная сила будет изменяться по линейному закону $N(x)=N_0(1-(2/l)x)$). Подставим эту функцию во второй член из (3.6).

$$\frac{1}{2} \mathcal{J}_{N} = \frac{1}{2} \int_{0}^{l/2} (1 - \frac{2}{l}x) N_{0} a_{1}^{2} \sin^{2} \omega t \frac{\pi^{2}}{l^{2}} \cos^{2} \frac{\pi}{l} x dx =$$

$$\frac{1}{2} a_{1}^{2} N_{0} \frac{\pi^{2}}{l^{2}} \sin^{2} \omega t \{ \int_{0}^{l/2} \cos^{2} \frac{\pi}{l} x dx - \frac{2}{l} \int_{0}^{l/2} x \cos^{2} \frac{\pi}{l} x dx \}.$$

Вычислим интегралы отдельно. $\int\limits_{0}^{l/2}\cos^{2}(\pi/l)xdx=l/4.$

Второй интеграл вычислим по частям.

$$\frac{2}{l} \int_{0}^{l/2} x \cos^{2} \frac{\pi}{l} x dx = \frac{2}{l} \left[\left[x \left(\frac{1}{2} x + \frac{l}{4\pi} \sin \frac{2\pi}{l} x \right) \right]_{0}^{l/2} - \int_{0}^{l/2} \left(\frac{1}{2} x + \frac{l}{4\pi} \sin \frac{2\pi}{l} x \right) dx \right] = \frac{2}{l} \left[\frac{l^{2}}{8} - \frac{1}{2} \left[\frac{x^{2}}{2} \right]_{0}^{l/2} - \frac{l}{4\pi} \left[-\frac{l}{2\pi} \cos \frac{2\pi}{l} x \right]_{0}^{l/2} \right] = \frac{2}{l} \cdot \frac{l^{2}}{4} \left(\frac{1}{4} - \frac{1}{\pi^{2}} \right).$$

Запишем окончательное значение

$$\frac{1}{2} \mathcal{J}_N = \frac{1}{2} a_1^2 \sin^2 \omega t \cdot \frac{\pi^2}{l^2} N_0 \cdot l(\frac{1}{8} + \frac{1}{2\pi^2}).$$

Выполняя процедуру энергетического метода, получим выражение для квадрата частоты собственных колебаний

$$\omega^2 = \frac{E_6 I_{y6}}{m} \frac{\pi^4}{l^4} - \frac{N_0}{m} \frac{\pi^2}{l^2} (\frac{1}{2} + \frac{2}{\pi^2}).$$
 Подставим числовые значения.
$$\omega^2 = 4,39572 - \frac{32674,61}{8,9} (\frac{\pi}{400})^2 (\frac{1}{2} + \frac{2}{\pi^2}) = 4,23659 \ \text{c}^{-2}; \ \omega = 2,0583 \ \text{c}^{-1}; \ \phi = 0,32759$$
 Ги.

Последним рассмотрим простейший вариант, когда продольная сила принимается постоянной по всей длине балки. Её значение $N_{\rm cp.}=0.5~N_0$. Потенциальную энергию подсчитаем, используя второй член выражения (3.6) без изменения.

$$\partial_{N} = \frac{1}{2} N_{\text{cp.}} \int_{0}^{\delta} a_{1}^{2} \sin^{2} \omega t \cdot \frac{\pi^{2}}{l^{2}} \cos^{2} \frac{\pi}{l} x dx = \frac{1}{2} N_{\text{cp.}} a_{1}^{2} \sin^{2} \omega t \cdot \frac{\pi^{2}}{l^{2}} \frac{l}{2}.$$

Потенциальная энергия от изгиба остается без изменения. Реализуя идею энергетического метода, получим квадрат частоты свободных колебаний при постоянной продольной силе $N_{cp.}$.

$$\omega^2 = \frac{E_{\delta}I_{y\delta}}{m} \frac{\pi^4}{l^4} - \frac{N_{cp.}}{m} \frac{\pi^2}{l^2}$$
 Подставим числовые значения.

$$\omega^2 = 4,39572 - (16323,8/8,9) \cdot (\pi/400)^2 = 4,28258 \text{ c}^{-2}; \omega = 2,06944 \text{ c}^{-1};$$

 $\phi = 0.32936 \; \Gamma$ ц. Частота, полученная численным методом - $\phi = 0.39037 \; \Gamma$ ц.

Сравнение различных вариантов приведено в табл. 3.3

Таблица 3.3

Вид эпюры	Вклад в энергию	Частота, Гц	% расхождения
Ступенчатая	102,53 кН∙м	0,32928	15,6
Треугольная	141,62 кН•м	0,32759	16,1
Прямоугольная	100,69 кН∙м	0,32936	15,6

Сравнение частоты с значениям частоты, полученной по программе SAP 2000

С целью получения верхней оценки частоты свободных колебаний примем функцию перемещений, обеспечивающую защемление концов балки. $y(x,t) = a_1 \sin \omega t \cdot x^2 (l-x)^2$. Подставим эту функцию в выражения потенциальной и кинетической энергий. Так как выше постоянная продольная сила дала практически такой же результат, как ступенчатое распределение сил, при подсчёте потенциальной энергии продольных сил, примем $N_{\rm cp}$. Все три члена вычислим отдельно.

$$\mathcal{J}_{u3e.} = 0.5 \int_{0}^{l} E_{\delta} I_{y\delta} a_{1}^{2} \sin^{2} \omega t (4l^{4} + 144l^{2}x^{2} + 144x^{4} - 48l^{3}x + 48l^{2}x^{2} - 288lx^{3}) dx = 0.5 E_{\delta} I_{y\delta} a_{1}^{2} \sin^{2} \omega t \cdot 0.8l^{5}.$$

$$\begin{split} \Im_N &= 0.5 N_{cp.} \int\limits_0^\delta a_1^2 \sin^2 \omega t (2l^2 x - 6l x^2 + 4 x^3)^2 = 9.52 \cdot 10^{-3} N_{cp.} l^7 a_1^2 \sin^2 \omega t. \\ K &= 0.5 \int\limits_0^l m [\omega^2 a_1^2 \cos^2 \omega t (l^4 x^4 + 4l^2 x^6 + x^8 - 4l^3 x^5 + 2l^2 x^6 - 4l x^7)] dx = \\ 7.9 \cdot 10^{-4} m l^9 \omega^2 a_1^2 \cos^2 \omega t. \end{split}$$

Приравняем максимальные значения энергий.

$$0.4E_{\delta}I_{y\delta}l^{5}-9.52\cdot10^{-3}N_{cp.}l^{7}=7.9\cdot10^{-4}\omega^{2}ml^{9}$$
. Из этого равенства определим ω^{2} .

$$\omega^2 = \frac{0.4 E_\delta I_{y\delta} - 9.52 \cdot 10^{-3} N_{cp} l^2}{7.9 \cdot 10^{-4} m l^5}.$$
 После подстановки числовых значений получим, что $\omega^2 = 22.71067$ с $\omega^2 = 4.76557$ с $\omega^2 = 0.75846$ Гц.

Значение частоты, полученной численным методом, $\phi = 0,390 \ \Gamma$ ц (табл. 3.1), находится между вычисленными выше значениями, что свидетельствует о наличии поворота концов балки в горизонтальной плоскости при колебании.

3.2.2. Определение низшей частоты вертикальных колебаний балки жёсткости

Представим балку жёсткости с вантами и пилонами как отдельный объект, которому задаются перемещения, представляемые, по-прежнему, функцией (3.7). При задании перемещений в вантах появятся дополнительные усилия ΔN_i , которые и вызовут дополнительные деформации пилонов. Ванты с двух сторон балки жёсткости объединим в одну плоскость, умножив площадь поперечного сечения вант на 2. В этой плоскости представим пилон как консольный стержень, заменив его пружиной с податливостью $\delta_n = H^3/3E_nI_{xn}$, H – высота пилона над балкой жёсткости; E_nI_{xn} - жёсткость пилона в направлении моста.

Дополнительные усилия в вантах определим методом сил, выбрав основную систему путём разреза вант. Главные коэффициенты, побочные коэффициенты и свободные члены системы уравнений примут вид (постоянные множители не приводятся).

$$\delta_{ii} = \frac{l_i}{2E_e A_e} + \frac{H^3}{3E_n I_n} \cos^2 \alpha_i; \quad \delta_{ik} = \frac{H^3}{3E_n I_n} \cos \alpha_i \cdot \cos \alpha_k; \quad \delta_{i\Delta} = -\sin(\pi/l) x_i \cdot \sin \alpha_i.$$

Решение системы уравнений дало следующие значения (общий множитель $a_1^2 \sin^2 \omega t$): $\Delta N_1 = -1283,690; \ \Delta N_2 = -891,658; \ \Delta N_3 = -478,006; \ \Delta N_4 = -53,884; \ \Delta N_5 = 372,011; \ \Delta N_6 = 776,223; \ \Delta N_7 = 1110,124; \ \Delta N_8 = 1346,554; \ \Delta N_9 = 1357,688; \ \Delta N_{10} = 1101,553.$

В первых четырёх вантах значения усилий имеют знак минус, поэтому они не получили удлинений. Эти ванты исключаются при подсчёте потенциальной энергии. Выражения энергий останутся прежними, но с дополнением энергий вант и пилонов.

При вычислении энергии учтём массу вант, поделив её поровну между пилоном и балкой жёсткости. Вес вант равен 0,891 кH/м. Масса вант для половины моста определяется произведением этой величины на длину вант и делением на $g = 9,81 \text{ м/c}^2$. Длина вант приведена в табл. 3.2.

 $M_{\rm B}=0.5\cdot2\cdot1316,62\cdot0,891/9,81=119,5829$ т. После деления на 200 м, получим массу вант $m_{\rm B}=0,5989$ т. Просуммируем её с погонной массой балки жёсткости. В итоге m=9,4979 т/м.

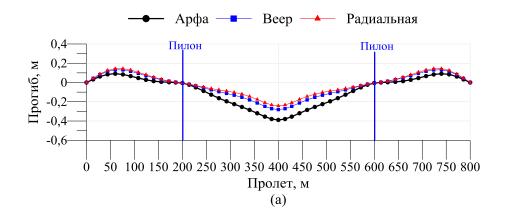
Запишем соответствующее равенство энергетического метода. Первые два члена и кинетическая энергия будут иметь прежний вид. Максимальные значения синуса и косинуса равны единице, постоянный множитель сокращается.

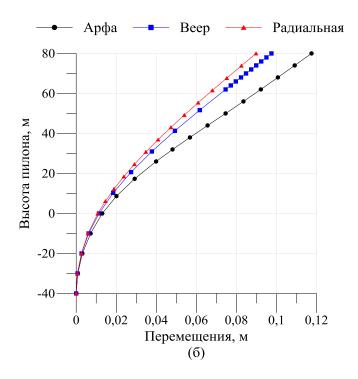
$$\frac{1}{2}E_{\delta}I_{x\delta}\frac{\pi^{4}}{l^{4}}\frac{l}{2} - \frac{1}{2}N_{cp.}\frac{\pi^{2}}{l^{2}}\frac{l}{2} + 2\cdot\frac{1}{2}\sum_{i=1}^{6}\frac{\Delta N_{i}^{2}l_{i}}{2E_{R}A_{R}} + 2\cdot\frac{1}{2}\frac{3E_{n}I_{n}}{H^{3}}\Delta_{n}^{2} = \frac{1}{2}m\omega^{2}\frac{l}{2}.$$
 (3.9)

$$\Delta_n = \frac{H^3}{3E_nI_n}\sum_{i=1}^7 \Delta N_i \cos\alpha_i = 1,754639a_1 \sin\omega t$$
. Квадрат частоты определяется из (3.9).

$$\omega^2 = \frac{E_{\delta}I_{x\delta}}{m}\frac{\pi^4}{l^4} - \frac{N_{cp.}}{m}\frac{\pi^2}{l^2} + \frac{4}{ml}\sum_{i=1}^6\frac{\Delta N_i^2l_i}{2E_BA_B} + \frac{4}{ml}\frac{3E_nI_n}{H^3}\Delta_n^2.$$
 Или в числах

$$ω^2 = 0.18424 - 0.10602 + 0.22082 + 6.43266 = 6.73170 c^{-2}$$
; $ω = 2.59455 c^{-1}$. $ω = 0.41294 Γ μ$.


С целью верификации сравним это значение с низшей частотой собственных колебаний всего моста, полученной численным методом. Её значение 0,35458 Гц. Как и следовало ожидать, частота отдельной балки жёсткости оказалась больше на 16,5 %, что, естественно, так как мост в целом является более податливым. Однако частоты имеют одинаковый порядок, что в какой-то мере подтверждает их достоверность.


3.3. Ветровой резонанс вант

Для того чтобы определить критическую скорость ветра, которая вызывает резонанс вант, требуется найти окончательное натяжение вант путём нелинейного Окончательный статического анализа модели моста. деформированный вид моста исследуется под собственным весом и временной нагрузкой, прикладываемых на балку жёсткости, где (H/L=1/5, вариант.2) с рассмотрением различных схем вант.

3.3.1. Оценка окончательного деформированного вида моста, натяжения вант и провеса вант

Статически расчёт изучаемого моста реализован энергетическим методом с реализацией метода сопряжённых градиентов. Вычисление вектора градиента в процессе минимизации общей потенциальной энергии моста по отношению к перемещениям осуществляется в начале каждой итерации с добавлением равномерно распределенной временной нагрузки на балку жёсткости 400 кг/м². Как показано на рис 3.5 (а, б), радиальная схема вант имеет наименьшие деформации пилона и прогиб балки жёсткости, а наибольшие значения - в схеме арфа. На рис 3.5 (в) видно, что наиболее загруженными являются самые длинные ванты в среднем и боковом пролётах. Самые большие силы в вантах были в схеме арфа, что естественно увеличивает продольные осевые силы в балке жёсткости схемы арфа.

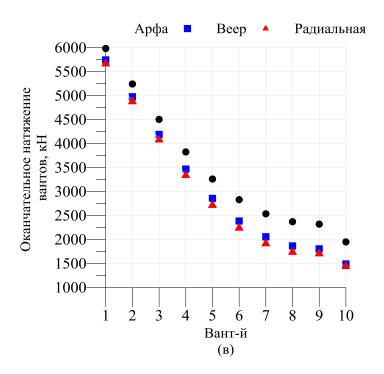


Рис 3.5. а) прогиб балки жёсткости, б) перемещения пилона, в) окончательные натяжении вант

Вычисленные окончательные натяжения вант используются при определении критической скорости ветра, которая приводит к резонансу вант. Ванты под действием собственного веса и растягивающих усилий провисают по цепной форме. Осевая жёсткость вант будет меняться нелинейно при наличии

провеса и натяжения вант. В анализе использован подход Эрнста (эквивалентного модуля упругости) [60] (см глава.1, раздел 1.3.3), который является наиболее принятым методом для моделирования вант в расчетах вантовых мостов.

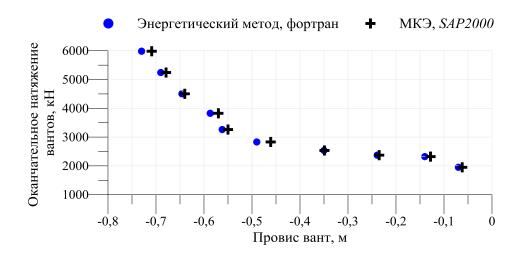


Рис 3.6. Изменение провеса и натяжения вант-й при использовании МКЭ и ЭМ

Рис.3.6 показывает соотношение между провисанием и натяжением вант для схемы арфа с использованием метода конечных элементов МКЭ (*SAP2000*) и энергетическим методом- ЭМ (Фортран). Разница между этими методами 2.7%.

3.3.2. Определение критической скорости ветра для зоны резонанса

В этом разделе рассмотрим задачу исследования только колебаний вант в ветровом потоке, что в ряде случаев приводит к ветровому резонансу. В начале представим вант как гибкую нить, закреплённую по концам. В отличие от нити с опорами на одном уровне, в вантах при учёте собственного веса вант натяжение по концам будет различным. Однако в рабочем состоянии ванты испытывают настолько сильное натяжение, по сравнению с которым влияние собственного веса становится незначительным. В дальнейшем натяжение вант принимается постоянным, равным среднему значению.

В результате можно взять известное уравнение гибкой нити, добавив в него член, учитывающий рассеивание энергии.

$$m\frac{d^2y}{dt^2} + \beta \frac{dy}{dt} - N\frac{\partial^2y}{\partial x^2} = q.$$
 (3.10)

Здесь m — масса на единицу длины струны, N — натяжение струны, β — коэффициент, учитывающий рассеивание энергии, q — погонная нагрузка. Решение представим в виде произведения двух функций

$$y_0(x,t) = y(x)F(t).$$
 (3.11)

После разделения переменных получим два уравнения.

$$\ddot{F}(t) + 2\alpha \dot{F}(t) + \omega^2 F(t) = 0,$$

$$y''(x) + \frac{m\omega^2}{N} y(x) = 0.$$
(3.12)

Решения уравнений имеют вид

$$F(t) = e^{-\alpha t} (A\cos\omega_{\alpha}t + B\sin\omega_{\alpha}t),$$

$$y(x) = C\cos\omega\sqrt{\frac{m_0}{N}}x + D\sin\omega\sqrt{\frac{m_0}{N}}x.$$
(3.13)

При колебании на воздухе $\omega_{\alpha} = \sqrt{\omega^2 - \alpha^2} \approx \omega$. $2\alpha = \beta/m$.

Поскольку по концам вант закреплен, то при x=0 и x=l y(x)=0. Из выражения (3.13) следует, C=0, $D\sin(\omega\sqrt{m/N})l=0$. Так как постоянная $D\neq 0$, то $\sin\omega\sqrt{\frac{m}{N}}l=0$, или

$$\omega \sqrt{\frac{m}{N}} l = n\pi, (n = 1, 2, \ldots)$$
(3.14)

Из соотношения (3.14) определяются значения угловых частот колебаний ω , совпадение, любой из которых с угловой частотой внешнего воздействия вызывает резонанс.

$$\omega_n = \frac{n\pi}{l} \sqrt{\frac{N}{m}}, (n = 1, 2, ...)$$
(3.15)

$$T = \lambda \sqrt{\frac{m}{N}} \tag{3.16}$$

где $\lambda = 2 l/n$ — длина волны. Каждому значению ω_n соответствует решение, удовлетворяющее уравнению (3.10) и концевым условиям. Общее решение представляет собой сумму этих решений. По координате x принята синусоида.

$$y_0(x,t) = \sum_{n=1}^{\infty} e^{-\alpha t} (A_n \cos \omega_n t + B_n \sin \omega_n t) \sin \frac{n\pi}{l} x.$$
 (3.17)

Далее получим частное решение уравнения (3.10) от воздействия следующего вида [19] $q=Q\cdot\sin\theta t\cdot\sin bx$, $Q=c_y(1/2)\rho v^2S$, $\theta=2\pi k$, где c_y- коэффициент поперечной (подъемной) силы для цилиндра приближенно принимается равным единице; $b=n\pi/l$; $\rho-$ плотность воздуха;

v — скорость ветрового потока; S — проекция площади поверхности тела на поверхность перпендикулярную направлению ветрового потока; k — частота срыва вихрей Бенара - Кармана в Γ ц.

Решение получим методом Бубнова – Галеркина, используя только один член $y(t,x)=a\sin\theta t\sin bx$.

$$\int_{0}^{2\pi/\theta} \int_{0}^{l} \left[a\theta^{2} \cdot \sin \theta t \cdot \sin bx + a2\alpha\theta \cos \theta t \cdot \sin bx + a(N/m)b^{2} \sin \theta t \cdot \sin bx \right]$$
(3.18)

 $-(Q/m)\sin\theta t \cdot \sin bx]\sin\theta t \cdot \sin bx \cdot dt dx = 0$

В результате интегрирования получим выражение множителя a. $a = Q / m(\omega_n^2 - \theta^2)$ и окончательное выражение перемещения примет вид

$$y(x,t) = \frac{Q\sin\theta t \cdot \sin(n\pi/l)x}{m[\omega_n^2 - \theta^2]},$$
(3.19)

Критическая скорость ветра находится из условия $\theta = \omega_n$. Для цилиндрических поверхностей число Струхаля Sh = (kd) / v = 0.185. Отсюда

$$v_{\rm KD} = \omega_n d / 0.185 \ 2 \ \pi. \tag{3.20}$$

3десь d диаметр ванты.

Полное решение будет равно сумме общего и частного решения

$$y(x,t) = \sum_{n=1}^{\infty} e^{-\alpha t} (A_n \cos \omega_n t + B_n \sin \omega_n t) + \frac{Q \sin \theta t \cdot \sin(n\pi/l)x}{m[\omega_n^2 - \theta^2]}$$
(3.21)

Произвольные постоянные определяются из начальных условий. Пусть при t=0 начальное смещение и начальная скорость равна нулю. После несложных преобразований для n=i получим

$$y_i(x,t) = \frac{Q\sin bx}{m(\omega_i^2 - \theta^2)} (\sin \theta t - \frac{\theta}{\omega_i} e^{-\alpha t} \sin \omega_i t).$$

Поскольку в отличие от нити ванты имею более жесткое сопротивление при искривлении, то во втором варианте рассмотрим колебание с учетом изгибной жесткости.

$$EI\frac{\partial^4 y}{\partial x^4} - N\frac{\partial^2 y}{\partial x^2} + m\frac{\partial^2 y}{\partial t^2} = q.$$
(3.22)

Вначале определим частоту собственных колебаний. Решение уравнения (3.22) будем искать в виде

$$y(x,t) = \sum f_n(t)\sin(n\pi/l)x.$$

Возьмем один член и подставим его в (3.22) при q = 0.

$$EI(n\pi/l)^4 f(t)\sin(n\pi/l)x + N(n\pi/l)^2 f(t)\sin(n\pi/l)x + \ddot{f}(t)\sin(n\pi/l)x = 0.$$

Отсюда получим уравнение для f(t), которое после деления на m примет вид

$$\ddot{f}(t) + \left[\frac{EI}{m}(\frac{n\pi}{l})^4 + \frac{N}{m}(\frac{n\pi}{l})^2\right]f(t) = 0$$

Из уравнения видно, что частота колебаний

$$\omega_n = \sqrt{\frac{EI}{m} \left(\frac{n\pi}{l}\right)^4 + \frac{N}{m} \left(\frac{n\pi}{l}\right)^2} = \sqrt{\omega_{n,\text{M3T.}}^2 + \omega_{n,\text{Hat.}}^2}$$

Здесь $\omega_{n,\text{изг.}}^2$ - частота собственных колебаний изгибаемой ванты.

Частное решение уравнения (3.22) получим методом Бубнова — Галеркина с функцией $f(t) = Q \cdot \sin \theta t$. Разделим уравнение на m. Решение будем искать с одним параметром $y(t,x) = a \sin \theta t \cdot \sin b x$. В итоге

$$(EI/m)\frac{\partial^4 y}{\partial x^4} - (N/m)\frac{\partial^2 y}{\partial x^2} + \frac{\partial^2 y}{\partial t^2} = (Q/m)\cdot\sin\theta t\cdot\sin\frac{n\pi}{l}x.$$

Подставим решение в уравнение

$$\int_{0}^{2\pi/\theta} \int_{0}^{l} \left[a \frac{EI}{m} \left(\frac{n\pi}{l} \right)^{4} \sin \theta t \cdot \sin bx - a\theta^{2} \sin \theta t \cdot \sin bx + a(N/m)b2 \sin \theta t \cdot \sin bx - a\theta^{2} \sin \theta t \cdot \sin bx + a(N/m)b2 \sin \theta t \cdot \sin bx \right]$$

$$(Q/m) \sin \theta t \cdot \sin bx \sin bx \sin bx \cdot dt dx = 0$$

Из этого выражения после выполнения соответствующих вычислений получим значение множителя a. $a=(Q/m)/(\omega_{n,\text{изг.}}^2+\omega_{n,\text{нат.}}^2-\theta^2)$. Следовательно,

$$y(x,t) = \frac{Q\sin\theta t \cdot \sin(n\pi/l)x}{m\left[\omega_{n,\text{M3T.}}^2 + \omega_{n,\text{H3T.}}^2 - \theta^2\right]},$$
(3.23)

Из равенства $\theta^2 = \omega_{n,\text{изг.}}^2 + \omega_{n,\text{нат.}}^2$ получается значение критической скорости ветра для зоны резонанса

$$v_{\text{kp}} = \frac{d\sqrt{\omega_{n,\text{M3}\Gamma.}^2 + \omega_{n,\text{HaT.}}^2}}{0,185 \cdot 2\pi}$$
(3.24)

Приведенные формулы показывают, что критические скорости ветра, вызывающие резонанс, зависят от числа полуволн n линейно для гибких вант и нелинейно при учете изгибной жесткости ванты. Очевидно, что при увеличении жесткости вант увеличивается и критическая скорость ветра. Вычисленные скорости ветра следует сопоставлять с числами Рейнольдса, так как не при каждом значении этого числа возможен срыв вихрей Бенара — Кармана. Числа Рейнольдса — Re = vd/v. Здесь в числителе скорость ветра и диаметр, а в знаменателе кинематическая вязкость воздуха в обычных условиях равная $0.145 \cdot 10^{-4} \,\mathrm{m}^2/\mathrm{c}$.

Ниже по формуле (3.24) подсчитаем критические скорости ветра для вант среднего пролета моста, схема которого изображена на рис. 1. Все ванты одинакового сечения: $E = 14720 \cdot 10^4 \text{ кH/m}^2$; $I = 9,715 \cdot 10^{-6} \text{ m}^4$; d = 0.11861 m; m = 10.11861 m

0,09083 т/м. На рис. 3.7 представлен график изменения критических скоростей ветра.

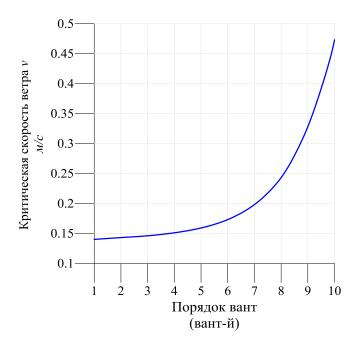


Рис. 3.7 График скоростей

Учитывая, что срывы вихрей Бенара-Кармана начинаются при числе Рейнольдса Re > 50, из выражения числа Рейнольдса можно определить минимальную скорость ветра, при котором возможны срывы вихрей. Для диаметра вант она оказалась равной 6,11247 10⁻³м/с. Так как все критические скорости оказались выше этого значения, то, очевидно, резонансы возможны для любой из вант. Положительным является тот факт, что они будут происходить при разных скоростях, не вызывая биение между собой, а это особенно важно для радиальной схемы, оказавшейся наиболее рациональной по деформациям.

3.4. Скорости ветра, вызывающие резонанс вантовых мостов

3.4.1. Ветровой резонанс среднего пролета моста

Лёгкость моста является, в какой-то мере, и его недостатком из-за гибкости вант. В статье М.И. Казакевича, известного специалиста в области аэродинамики мостов, отмечается, что системы, имеющие низшую частоту свободных колебаний менее 1 Гц, очень чувствительны к ветровым воздействиям [14].

Именно таковыми являются большепролётные вантовые мосты. Податливость моста приводит к значительным колебаниям от ветрового воздействия, которое может привести к ветровому резонансу.

Для решения этой задачи возьмём следующее дифференциальное уравнение [7]

$$\frac{\partial^2}{\partial x^2} \left[E_{\delta} I_{y\delta}(x) \frac{\partial^2 y}{\partial x^2} \right] + \frac{\partial}{\partial x} \left[N(x) \frac{\partial y}{\partial x} \right] + k(x) y(x) + m \frac{\partial^2 y}{\partial t} = q(x, t). \tag{3.25}$$

Вначале определим частоты собственных колебаний, взяв уравнение без свободного члена. При определении частот примем постоянными все характеристики, чтобы получить обозримое выражение для частот. Решение уравнения (3.25) представим в виде произведения двух функций [38].

$$y_0(x,t) = \sum F_n(t) a_n \sin bx \text{ , где } b = n\pi/l. \ \text{Подставим эту функцию в (3.25)}.$$

$$E_\delta I_{y\delta} b^4 \sum F_n(t) a_n \sin bx - Nb^2 \sum F_n(t) a_n \sin bx + k \sum F_n(t) a_n \sin bx + m \sum \ddot{F}_n(t) a_n \sin bx = 0.$$

Разделим уравнение на $m \sum F_n(t) a_n \sin bx$.

$$\frac{E_{\delta}I_{y\delta}b^{4}}{m} - \frac{Nb^{2}}{m} + \frac{k}{m} + \frac{\sum \ddot{F}_{n}(t)}{F_{n}(t)} = 0. \sum \ddot{F}_{n}(t) + (\frac{E_{\delta}I_{y\delta}b^{4}}{m} - \frac{Nb^{2}}{m} + \frac{k}{m})F_{n}(t) = 0.$$

Очевидно, что выражение в скобках представляет собой квадраты частот ω_n . Решение полученного уравнения известно

$$y_0(x,t) = \sum_{n=1}^{\infty} e^{-\alpha t} (A_n \cos \omega_n t + B_n \sin \omega_n t) \sin bx$$
. $\alpha = \psi/2T$; T - период колебаний; для стальных большепролетных мостов [19] $\psi = 0.02 \div 0.3$. Постоянные A_n и B_n находятся, исходя из заданных начальных условий. С учётом начальных условий решение, например, для $n = 1$, примет вид

$$y_{01}(x,t)=e^{-\alpha_1 t}(y_{\scriptscriptstyle H1}\cos\omega_{\alpha_1}t+((v_{\scriptscriptstyle H1}+\alpha_1y_{\scriptscriptstyle H1})/\omega_{\alpha_1})\sin\omega_{\alpha_1}t)\sin bx\,,\,\mathrm{где}\,\,\omega_{\alpha_1}=\sqrt{\omega_1^2-\alpha_1^2}\,;$$
 $y_{\scriptscriptstyle H1}$ - начальное перемещение; $v_{\scriptscriptstyle H1}$ - начальная скорость.

Далее получим частное решение уравнения (3.25) от ветрового воздействия [19] $q(x,t) = Q \sin \theta t \cdot \sin bx$; $Q = 0.5 c_y \rho v^2 S$; $\theta = 2\pi p$. Здесь c_y – коэффициент поперечной (подъёмной) силы. По аналогии со зданиями этот коэффициент можно принять в зависимости от отношения ширины проезжей части к высоте при нормальном воздействии ветра, например, при соотношении более 2-х $c_y = 1.1$; $\rho = 1.224 \text{ кг/м}^3$ – плотность воздуха при $t^0 = 4^0 \text{ C}$ и 730 мм рт. ст.; v – скорость ветрового потока; S – проекция площади поверхности тела на поверхность, перпендикулярную направлению ветрового потока; p – частота срыва вихрей Бенара-Кармана в Γ ц.

Решение уравнения получим методом Бубнова — Галеркина, используя один член $y(x,t)=a_1\sin\theta t\cdot\sin bx$.

$$\int_{0}^{2\pi/\theta} \int_{0}^{l} [E_{\delta}I_{x\delta}b^{4}a_{1}\sin\theta t \cdot \sin bx - Nb^{2}a_{1}\sin\theta t \cdot \sin bx + ka_{1}\sin\theta t \cdot \sin bx + m\theta^{2}a_{1}\sin\theta t \cdot \sin bx - Q\sin\theta t \cdot \sin bx]\sin\theta t \cdot \sin bx \cdot dtdx.$$

После перемножения достаточно проинтегрировать только два члена. Интегрирование по времени дает $2\pi/\theta$, а по линейной координате – l/2. Подставляя и сокращая эти значения, окончательно получим

$$a_1(E_{\delta}I_{x\delta}b^4-Nb^2+k-m\theta^2)=Q.\ \ \text{После деления этого выражения на }m,\ \text{найдём}\ \ a_1.$$

$$a_1=\frac{Q}{m(E_{\delta}I_{x\delta}b^4-Nb^2+k-\theta^2)}.\ \ \text{Окончательное решениe}$$

$$y(x,t) = \frac{Q\sin\theta t\cdot\sin bx}{m(E_{\delta}I_{x\delta}b^4-Nb^2+k-\theta^2)} = \frac{Q\sin\theta t\cdot\sin bx}{m(\omega_{\mathrm{n}}^{\ \ 2}-\theta^2)}$$
. Первые три члена в скобках

представляют квадраты частот собственных колебаний. Они могут быть определены аналитически, как это показано в статье, либо численно. Запишем полное решение для n=1 и y_{n1} .

$$y_1(x,t) = [(Q\sin\theta t/(m(\omega_1^2 - \theta^2))) + e^{-\alpha_1 t}(v_{H1}/\omega_1)\sin\omega_1 t]\sin bx.$$

Критическая скорость ветра находится из выражения $\theta = \omega_n$ или $\varphi = p$. Частота срыва вихрей зависит от скорости через число Струхаля Sh = (pS/v), которое для мостовых конструкций изменяется примерно от 0,10 до 0,12 [14]. Примем Sh = 0,12. В итоге $v_{\kappa p.} = \varphi_n S/0$,12. В нормах рекомендуется учесть ещё высоту ограждения, обычно принимаемую 0,6 м. Вычислим критическую скорость ветрового потока для частоты вертикальных колебаний. $v_{\kappa p.} = 0,41294 \cdot (3.2+0.6)/0$,12 = 13,08 м/с.

С целью оценки величины зоны резонанса построим график колебания середины балки жёсткости при прохождении через резонанс при $\Delta t = 0,1$ с (рис. 3.8). График построен без учёта демпфирования. По графику видно, что зона резонанса оказывается очень узкой. Как известно, чтобы раскачать систему, необходимо время. Поэтому разрушение конструкции можно ожидать лишь при действии ветрового потока с постоянной критической скоростью в течение некоторого времени, зависящего от жёсткости конструкции.

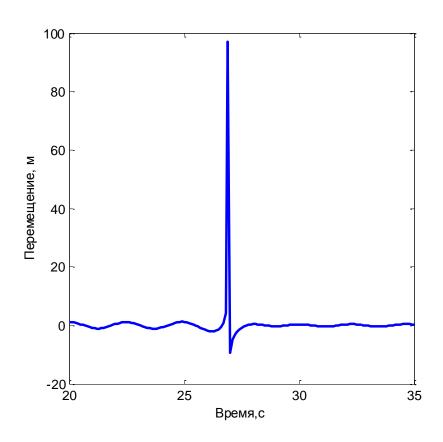


Рис. 3.8. Перемещение середины пролета от переменной скорости ветра v=12+0.04t

Ветровой резонанс - не единственное опасное воздействие ветра на мостовые конструкции. На практике имеют место и другие аэродинамические воздействия. Идея «классического» флаттера подробно изложена в книге [30], на примере упруго закреплённой по краям связями пластины. Жёсткости связей в общем случае принимаются различными. Теоретические выводы в [30] показали, что в случае равенства жёсткостей, решение даёт два вещественных положительных значения частот собственных колебаний. Система при таких частотах не теряет аэродинамическую устойчивость. Возможны только гармонические колебания. Рассмотренную схему можно перенести и на балку жёсткости, где роль связей выполняют ванты.

Принимая во внимание, что поперечное сечение балки жёсткости является симметричным, при симметричной нагрузке также будут иметь место только гармонические колебания. Тем более, что для рассматриваемой схемы моста частоты, определённые численно и аналитически, получились вещественными и положительными. Явления дивергенции и флаттера будут отсутствовать.

Из-за большой разницы в жёсткостях балки в горизонтальном и вертикальном направлениях для неё маловероятны параметрические колебания по перекачке энергии. В общем случае, аэродинамические явления могут быть как для отдельных элементов моста, так и для всего моста в целом. Всё зависит от конструктивных особенностей проектируемого моста и скорости ветра, поэтому все проектируемые схемы должны подвергаться аэродинамическим расчётам.

Выводы

В этой главе исследованы: 1) Определение частот свободных колебаний для разных схем вантовых мостов. Для получения собственных частот для рассматриваемого моста было представлено численное решение для каждой схемы вант моста. Было предложено аналитическое решение с использованием принципов энергетического метода по определению собственных частот колебаний (вертикальные и горизонтальные колебания) центрального пролёта

моста, представленное для радиальной схемы. Аналитическое решение было проведено с учётом осевой продольной силы в балке жёсткости с помощью трёх функций (ступенчатая, треугольная, прямоугольная). 2) Была представлена достоверность энергетического метода при вычислении провеса вант. 3) Аналитическое исследование было проведено для изучения ветрового резонанса вант и среднего пролета моста, соответственно.

Результаты этой главы были опубликованы в [23, 24, 25, 94, 95]

Глава 4. ВЛИЯНИЕ ВНЕЗАПНОГО ОБРЫВА ВАНТ НА ДИНАМИЧЕСКОЕ ОТКЛИК ВАНТОВЫХ МОСТОВ

4.1. Значимость изучения влияния внезапного обрыва вант на динамический отклик вантовых мостов.

Изучение поведения вантовых мостов при внезапном обрыве вант является первом шагом в разработке актуальных методов, которые могут увеличить долговечность живучесть вантовых мостов предотвратить И И катастрофического крушения. Обрыв вант может возникнуть, например, из-за автомобильной катастрофы, в случаях теракта и др. Возможные сценарии, которые могут привести к разрыву вант, иллюстрированы на рис. 4.1. Янь [119] указал, что мосты являются привлекательной целью для террористов из-за их доступности, а также из-за тяжелых последствий на общество при их повреждении. В последние годы после ряда серьезных обрушений строительных объектов проблема обеспечения надежности строительных конструкций, зданий и сооружений стала одной из основных в области конструктивной безопасности. В железобетонным первую очередь ЭТО относится К конструкциям. При проектировании конструкций сопротивление крушению означает нечувствительность к случайным обстоятельствам. Это может быть достигнуто путём обеспечения высокого уровня безопасности против локального разрушения. Появилось новое направление исследования живучести объектов при запроектных воздействиях [8, 18, 26, 27]. Обрыв вант следует рассматривать в качестве возможного локального разрушения [118], так как поперечное сечение вант имеет небольшую жесткость и, следовательно, ванты имеют низкое сопротивление при запроектных воздействиях. Последние события показали обрушения мостов, таких как развал балки жесткости ферменных мостов в Миннеаполис, Миннесота [68] и также обрушение висячего моста в 2011 году (Картенегаро мост, Индонезия) в процессе ремонта вант. Эти события привлекают внимание к более тщательному исследованию этого вопроса по отношению к вантовым мостам. Исследования по этой теме были проведены в последние

несколько лет с изучением этого вопроса в [58, 75, 103, 117, 120]. Поскольку исследований, связанных с вантовыми мостами, недостаточно и потребляется продолжить исследование, новый алгоритм, основанный на энергетическом методе, разработан для исследования динамического поведения вантовых мостов при внезапном обрыве ванта.

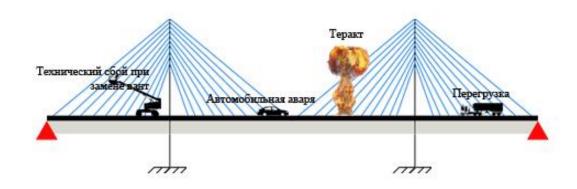


Рис 4.1. Возможные сценарии, ведущие к обрыву вант

4.2. Обобщение энергетического метода, используемого в разработке предлагаемого алгоритма

Нелинейный динамический отклик вантовых мостов осуществляется при минимизации полной потенциальной и кинетической энергии [53]. Анализ этого метода состоит из расчета шаг за шагом отклика моста через интервалы времени. Во время каждого интервала равновесие динамичных усилий в конце каждого шага осуществляется методом сопряженных градиентов. В этой главе вычисление перемещений и их производных через интервалы времени Δt осуществляется методом постоянного ускорения. В этом методе при интегрировании, из-за значительной нелинейности задачи, на каждом шаге берётся среднее ускорение от смежных значений [81]. Это предположение приводит к следующим соотношениям:

$$x(t + \Delta t) = x + \Delta x, \qquad \dot{x}(t + \Delta t) = \frac{2}{\Delta t} \Delta x - \dot{x}, \qquad \ddot{x}(t + \Delta t) = \frac{4}{\Delta t^2} \Delta x - \frac{4}{\Delta t} \dot{x} - \ddot{x}$$
(4.1)

где x, \dot{x} , \ddot{x} , Δx перемещение, скорость, ускорение и инкрементное перемещение, соответственно. Инкрементное уравнение движения:

$$M \cdot \Delta \ddot{x} + C \cdot \Delta \dot{x} + k \cdot \Delta x = \Delta p \tag{4.2}$$

Используя метод постоянного ускорения, подставляя ур. (4.1) в ур. (4.2), приводит к следующему выражению:

$$\left[k + \frac{2}{\Delta t}C + \frac{4}{\Delta t^2}M\right]\Delta x = \Delta p + 2C\dot{x} + M\left[\frac{4}{\Delta t}\dot{x} + 2\ddot{x}\right]$$

$$; \Delta x = k_d^{-1}\Delta p_d$$
(4.3)

где

K, C и M — жёсткость изгибных элементов, демпфирование и массы, соответственно, при t_i , Δp — вектор инкрементальных сил. Матрица динамической жесткости и матрица вектор инкрементных динамических сил описаны в левой и правой частях ур. (4.3), соответственно в скобках.

Условие динамического равновесия определяется по формуле:

$$g_s = \frac{\partial W}{\partial (\Delta x_s)} = 0 \qquad s = 1, 2, 3, \dots, N$$
 (4.4)

где Δx_s — перемещение в направлении s через шаг времени Δt ; N — общее количество степеней свободы; W — полная энергия моста.

Полное выражение энергии моста описывается таким образом:

$$W = W\{x\} + W\{\dot{x}\} + W\{\ddot{x}\} + W\{V\}$$
(4.5)

где

 $W\{x\}$ — полная энергия моста при собственным весе и прикладываемых нагрузок; $W\{\dot{x}\}$ — рассеиваемая энергия с помощью демпфирования ; $W\{\ddot{x}\}$ — кинетическая энергия моста; $W\{V\}$ — полная работа ветровой нагрузки.

Минимум энергии моста вычисляется в каждой итерации с использованием метода сопряженных градиентов, где перемещения обновляются таким образом:

$$\Delta x_{k+1} = \Delta x_k + S_k v_k;$$

$$[v]_{k+1} = -[g]_{k+1} + \beta [v]_k,$$

$$\beta_k = \frac{[g]_{k+1}^T \{[g]_{k+1} - [g]_k\}}{[v]_k^T \{[g]_{k+1} - [g]_k\}}.$$
4.6)

где

v — вектора спуска, k — номер итерации, S . — длина шага итерации Согласно уравнению (4.4), вектор градиента и все элементы моста выражаются таким образом:

$$g\{x\} + g\{\dot{x}\} + g\{\dot{x}\} + g\{\dot{x}\} + g\{V\} = \sum_{n=1}^{f_j} \sum_{r=1}^{6} k_{sr} (\tilde{x} + \Delta x)_r - \sum_{n=1}^{p_j} (t_\circ + \Delta t)_{jn} (X_n - X_j + \Delta x_n - \Delta x_j)_i - F_s + \sum_{r=1}^{N} C_{sr} (\frac{2}{\Delta t} \Delta x - \dot{x}) + \sum_{r=1}^{N} m_{sr} (\frac{4}{\Delta t^2} \Delta x - \frac{4}{\Delta t} \dot{x} - \ddot{x}) - \frac{1}{2} \rho \cdot \tilde{C} (V - \frac{2}{\Delta t} \Delta x_L + \dot{x}_L)_s^2$$

$$(4.7)$$

где

 C_{sr} — критическое демпфирование; ρ — плотность воздуха; V — средняя скорость ветра на шаге времени; \dot{x}_L — скорость ветра на узлы элементов моста, связанных с степенями свободы; \check{C} — аэродинамические коэффициенты.

Остальные параметры в предыдущем уравнении были четко определены в (глава.1, раздел 1.6).

Подставляя выражение Δx_{k+1} ур. (4.6) в ур. (4.5), приходим к полиному относительно S:

$$W = C_4 S^4 + C_3 S^3 + C_2 S^2 + C_1 S + C_0$$
(4.8)

Значение S - длина шага итерации определяется следующим образом;

$$S_{k+1} = S_k - \frac{\partial W/\partial S}{\partial^2 W/\partial S^2}.$$
(4.9)

Согласно ур. (4.9), нет необходимости вычислять C_0 .

Замена Δx , ур. (4.7) с ($\Delta x + Sv$), ур. (4.6), получим коэффициенты длины шага в уравнении (4.8) следующим образом:

$$C_{4} = \sum_{n=1}^{p} \left(\frac{EAa_{3}^{2}}{2L_{\circ}^{3}} \right)_{n} C_{3} = \sum_{n=1}^{p} \left(\frac{EAa_{2}a_{3}}{L_{\circ}^{3}} \right)_{n}$$

$$C_{2} = \sum_{n=1}^{f} \sum_{s=1}^{6} \sum_{r=1}^{6} \left(\frac{1}{2}v_{s}k_{sr}v_{r} \right)_{n} + \sum_{s=1}^{p} \sum_{r=1}^{f} \frac{1}{\Delta t} C_{sr}v_{r}v_{s} + \sum_{s=1}^{N} \sum_{r=1}^{N} m_{sr}v_{r}v_{s}$$

$$\sum_{n=1}^{p} \left(t_{\circ}a_{3} + \frac{EA \cdot \left(a_{2}^{2} + 2a_{1}a_{3} \right)}{2L_{\circ}^{3}} \right)_{n} + \sum_{s=1}^{N} \sum_{r=1}^{N} \frac{1}{\Delta t} C_{sr}v_{r}v_{s} + \sum_{s=1}^{N} \sum_{r=1}^{N} m_{sr}v_{r}v_{s}$$

$$C_{1} = \sum_{n=1}^{f} \sum_{s=1}^{6} \sum_{r=1}^{6} \left[k_{sr} (\tilde{x} + \Delta x)v_{s} \right]_{n} + \sum_{n=1}^{p} \left(t_{\circ}a_{2} + \frac{EAa_{1}a_{2}}{2L_{\circ}^{3}} \right)_{n}$$

$$- \sum_{n=1}^{N} F_{n}v_{n} + \sum_{s=1}^{N} \sum_{r=1}^{N} C_{sr} \left(\frac{2}{\Delta t} \Delta x - \dot{x} \right)_{r}v_{s} + \sum_{s=1}^{N} \sum_{r=1}^{N} \frac{2}{\Delta t^{2}} \left(\frac{4}{\Delta t^{2}} \Delta x - \frac{4}{\Delta t} \dot{x} - \ddot{x} \right)_{r}v_{s}$$

$$- \sum_{s=1}^{N} \frac{1}{2} \rho \cdot \tilde{C} \left(V - \frac{2}{\Delta t} \Delta x_{L} + \dot{x}_{L} \right)_{s}^{2} v_{s}$$

$$(4.10)$$

В ур.(4.10), значение a_1 , a_2 , a_3 описываются следующим образом:

$$a_{1} = \sum_{i=1}^{2} \left[\left(X_{ni} - X_{ji} \right) + \left(\Delta x_{ni} - \Delta x_{ji} \right)^{2} + \frac{1}{2} \left(\Delta x_{ni} - \Delta x_{ji} \right)^{2} \right]$$

$$a_{2} = \sum_{i=1}^{2} \left[\left[\left(X_{ni} - X_{ji} \right) + \left(\Delta x_{ni} - \Delta x_{ji} \right) \right] (v_{ni} - v_{ji}) \right]$$

$$a_{3} = \sum_{i=1}^{2} \left(v_{ni} - v_{ji} \right)^{2}$$

$$(4.11)$$

4.3. Предлагаемый алгоритм для вычисления динамического отклика вантовых мостов при внезапном обрыве вант

Чтобы проследить действия обрыва вант в процедурах алгоритма, в оборвавшемся ванте удаляется соответствующая сила T_c и она прикладывается к опорным узлам ванта на балке жёсткости, как показано на рис.4.2.

Динамический анализ вантового моста начинается после того, как восстановлено окончательное деформированное состояние моста, $\widetilde{x} = x_{st}$

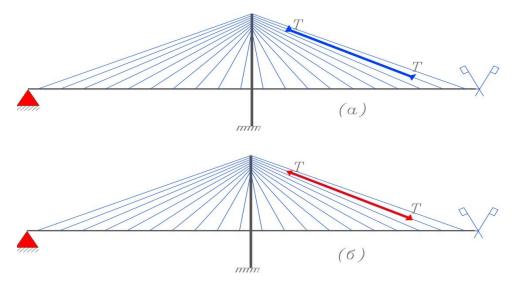


Рис 4.2. Силовой путь вант: а- исходное состояние; б- при обрыве вант

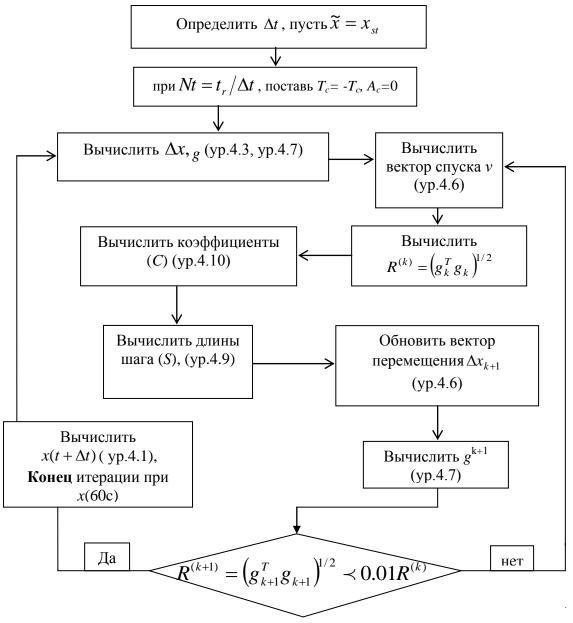


Рис 4.3. Предлагаемый алгоритм для вычисления динамического отклика вантовых мостов при внезапном обрыве вант

4.4. Сценарий обрыва вант

Динамический анализ изучаемого моста осуществляется в течение 60 секунд, как общее время анализа с общим количеством шагов $(N_t) = 6000$ и шаг времени = 0,01. Ванты, предназначенные для обрыва, удаляются из анализа с определением их площадки $A_c = 0$ при $t_r = 10$ сек и соответствующие им силы T_c прикладываются к опорным узлам вант, примыкающим к балке жёсткости.

прогрессирующем [67] Согласно нормам при обрушении (GSA) 100% принимать постоянной нагрузки, рекомендуется предварительное натяжение вант и 75% от временной нагрузки при анализе. Оптимальные предварительные натяжения вант, использующие комбинированные нагрузки обоснованы в предлагаемом алгоритме (см. глава.2, раздел 2.1). Чтобы исследовать наиболее резкий отклик моста при обрыве вант, ветер, действующий в продольном направлении моста, добавляется к предыдущей комбинированной нагрузке. (см. приложение 2).

Величина демпфирования должна рассматриваться с осторожностью и с учетом материала, формы колебания и прикладываемых нагрузок. В статье Руис-Теран и Апарисио [97], демпфирование значений может быть до 2% для вантовых конструкций, следовательно, коэффициент демпфирования = 0.02. Разрушающая сила вант = 9500 кН. Мост имеет общую длину 800 м с центральным пролётом 400 м. Веер-образная схема вант была выбрана для данного исследования, где расстояние между вантами вдоль балки жёсткости составляют 20 м. Собственная частота колебания моста 0.357 Гц при фазе 1 (до обрыва ванта). Все характеристики моста написаны в (глава 2, раздел 2.2). Расстояние между вантами вдоль балки жёсткости 20 м (вариант.1, глава 2, раздел 2.3). В данном исследовании рассматриваются три сценария обрыва вант, как показано на рис. 4.4. Первый сценарий предполагает внезапный обрыв одного ванта. Обрыв двух и трёх вант, соответственно, рассматривается при втором и третьем сценарии. Каждый сценарий, предусматривает обрыв вант на параллельных сторонах моста (два ванта одновременно).

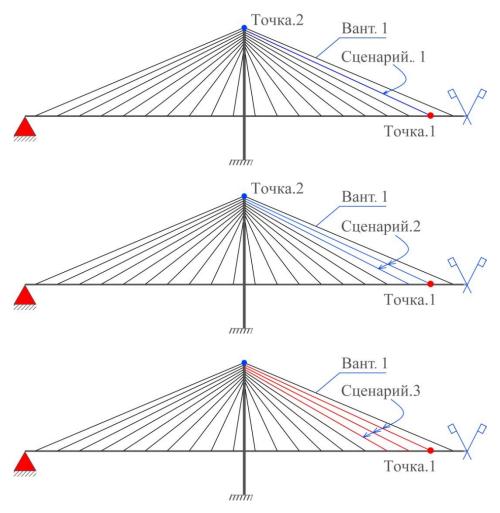


Рис 4.4. Рассмотренные сценарии обрыва вант

4.5.Оценка деформаций моста при обрыве вант

4.5.1. Оценка прогиба балки жёсткости при рассмотренных сценариях обрыва вант

Динамический отклик моста при рассмотренных сценариях обрыва вант осуществляется через процедуру предлагаемого алгоритма, который показан на рис. 4.3. Динамический отклик, показанный на рис. 4.5, 4.6, 4.7 прослеживает обрыв вант соответственно рассматриваемому сценарию обрыва. Динамический анализ вантового моста начинается после того, как получено окончательное деформированное состояние моста по результатам статического анализа, где прогиб балки жёсткости в точке1 равен 0,14 м. Эта величина колеблется вверх и вниз $c \pm 26\%$ на первом этапе (до обрыва).

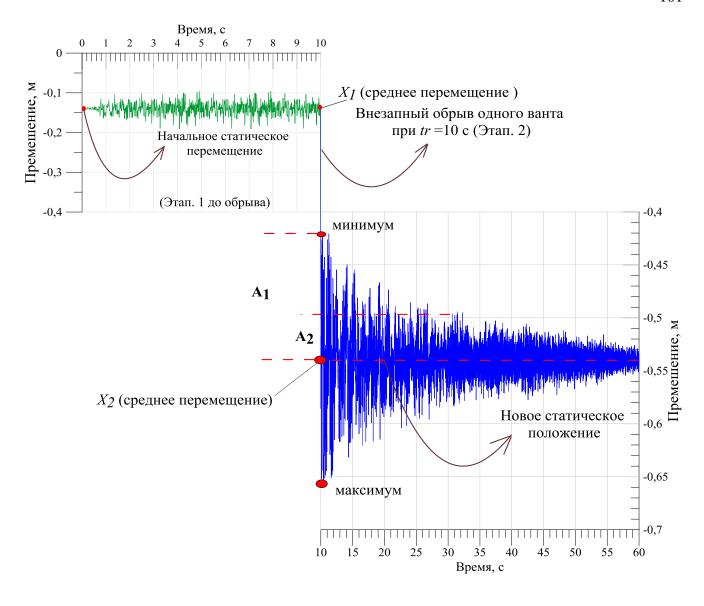


Рис. 4.5. Изменение прогиба балки жёсткости в точке 1 со временем при сценарии 1

В рассматриваемом моменте разрыва (t_r) , прогиб балки жёсткости значительно увеличивается и постепенно уменьшается вдоль заданной временной области (60 сек). На втором этапе, мост приходит к новому статическому положению, где динамический отклик моста происходит вокруг нового положения, которое целиком отличается от исходного статического положения, когда все ванты целы.

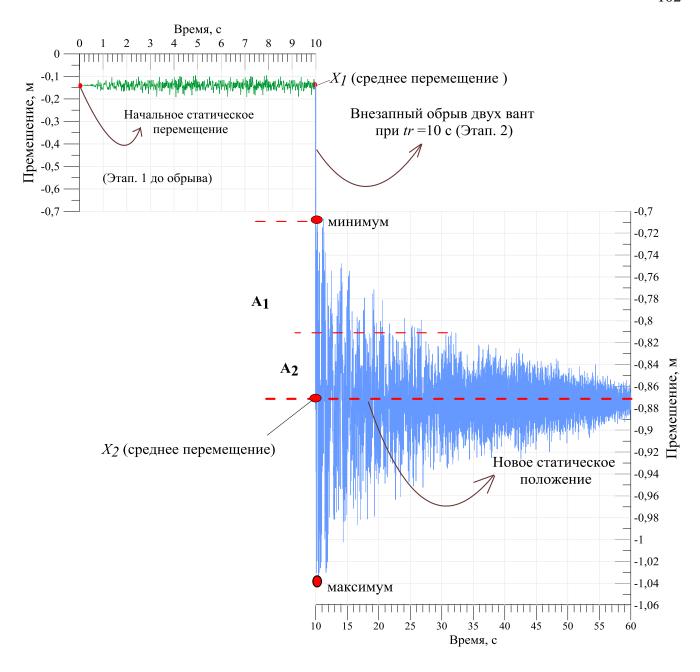


Рис. 4.6. Изменение прогиба балки жёсткости в точке 1 со временем при сценарии 2

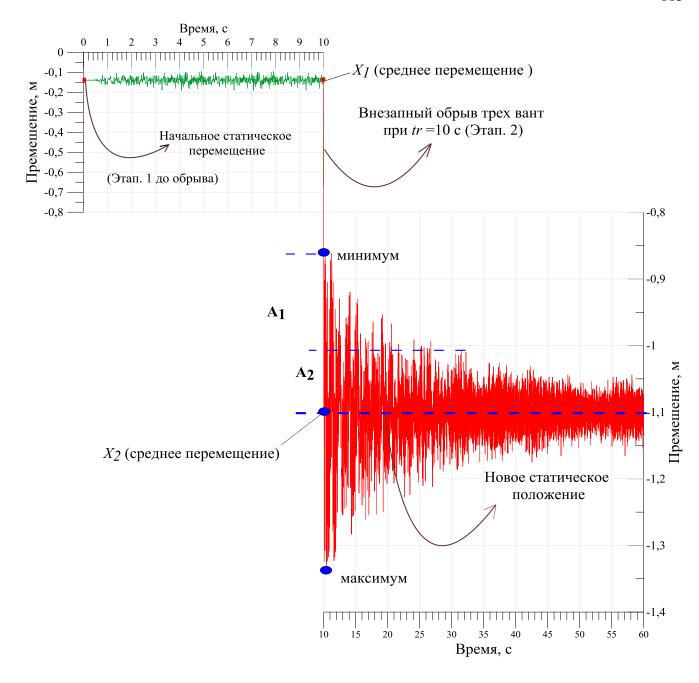
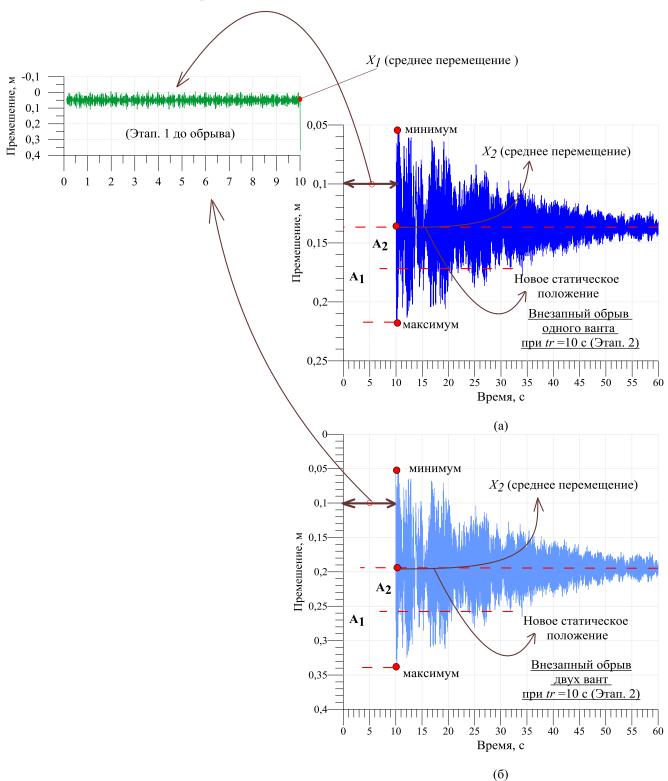



Рис. 4.7. Изменение прогиба балки жёсткости в точке 1 со временем при сценарии 3

4.5.2. Оценка перемещения пилона при рассмотренных сценариях обрыва вант

Рис. 4.8 (а, б, в) показывает перемещения пилона в точке 2 при внезапном обрыве вант, что соответствует рассматриваемому сценарию обрыва. Перемещение пилона меняется с более высоким процентом ± 60% вокруг статического значения, как показано на первом этапе. Давление ветра в продольном направление моста увеличивает колебание до обрыва. Внезапный

обрыв трех вант приводит к значительному увеличению перемещения верха пилона, как показано на рис.4.8.в.

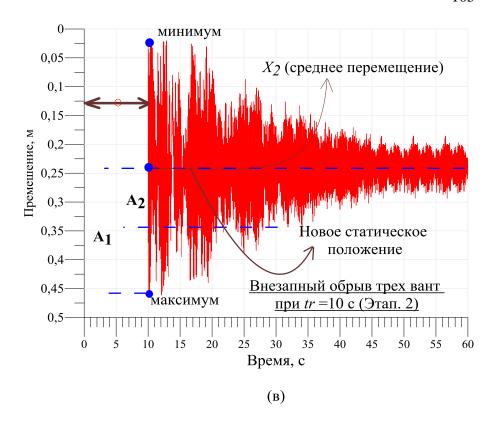


Рис. 4.8. Изменение перемещения пилона в точке 2 со временем а - при сценарии 1, б - при сценарии 2, в - при сценарии 3

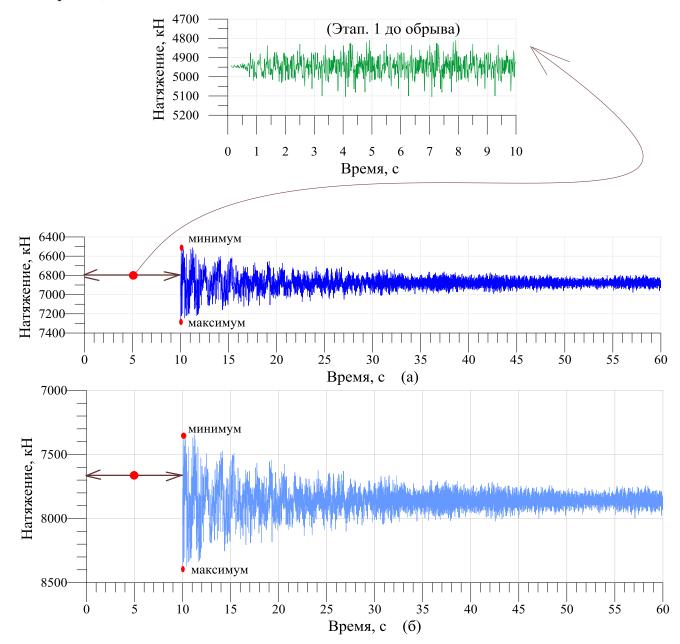
4.5.3. Динамический эффект для оценки деформации моста при рассмотренных сценариях обрыва вант

Всестороннее исследование для вычисления динамического эффекта для оценки деформации моста показаны в таблице. 4.1. Динамический эффект можно заметить при вычислении величины амплитуды A_1 в рассматриваемое время обрыва (t_r) и сравнивая эти значения с другими амплитудами A_2 в течение 30 секунд.

Таблица 4.1 Динамический эффект для оценки деформации моста при рассмотренных сценариях обрыва вант.

	Прогиб балки жёсткости, точка.1.				Перемещение пилона, точка.2.			
		Динамический эффект				Динамический эффект		
Сценария обрыва	X_2/X_1	A ₁ при tr =10 сек (м)	А ₂ через 30 сек (м)	$X_2(M)$	X_2/X_1	A ₁ при tr =10 сек (м)	A ₂ через 30 сек (м)	Х ₂ (м)
Один вант	3.92	0.125	0.04	-0.54	2.94	0.081	0.034	0.138
Два ванта	6.30	0.17	0.06	-0.87	4.04	0.15	0.07	0.19
Три вант	7.97	0.24	0.09	-1.1	5.09	0.22	0.11	0.24

Таким образом, как показано в табл. 4.1, третий сценарий имеет более высокий динамический эффект при обрыве трёх вант одновременно.


4.6 Влияние внезапного обрыва вант на увлечение растягивающей силы в смежных вантах

4.6.1. Оценка натяжения в смежных вантах при рассмотренных сценариях обрыва вант

При моделировании процесса обрыва натяжение в смежных вантах увеличивается при рассмотренных сценариях. Цель оценки состояла в том, чтобы узнать, превышает ли натяжение в смежных вантах разрушающую силу вант. Для ванта 1 максимальные натяжения, соответствующие первому, второму и третьему сценариям равны 7279 кH, 8418 кH, 10646 кH, соответственно. Следовательно, в

вантах возникнут напряжения, превышающие предел прочности, и в конечном итоге происходит обрыв.

Результаты показывают, что обрыв одного ванта из параллельных сторон моста (первый сценарий обрыва) не приводит к прогрессирующему обрушению, однако в третьем сценарии, после обрыва ванта 1, остальные смежные ванты воспринимают дополнительные натяжения и обрываются прогрессивным образом, схожим с распадом ряда домино. Таким образом, мост разрушается. Рис. 4.9 (а, б, в) показывает изменение натяжения ванта 1 со временем при сценарии.1,2,3.

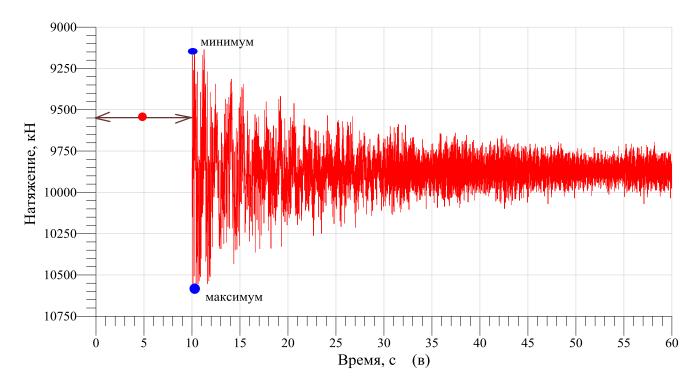


Рис.4.9. Изменение натяжения ванта 1 со временем; а - при сценарии 1, б - при сценарии 2, в - при сценарии 3

4.6.2. Предлагаемый динамический коэффициент для смежных вант при рассмотренных сценариях обрыва вант

Чтобы избежать обрыв вант, который приводит к обрушению моста, были получены коэффициенты для смежных вант для каждого сценария обрыва, учитывающие динамический эффект. Для первого, второго и третьего сценария динамические коэффициенты для самых длинных смежных вант получились равными (1.31 - 1.47), (1.48 - 1.70), (1.85 - 2.15) соответственно, как показано на рис. 4.10.

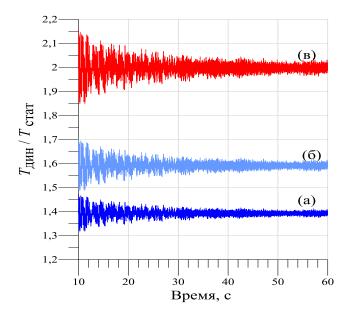


Рис.4.10. Изменение динамического коэффициента для самых длинных смежных вант при рассмотренных сценариях обрыва;

а - при сценарии 1, б - при сценарии 2, в - при сценарии 3

Выводы

Поскольку натяжение вант является основным параметром для оценки живучести вантовых мостов, любые значительные изменения этой силы могут приводить к разрушению несущих элементов моста. Таким образом, цель этой главы состоит в том, чтобы продемонстрировать подход, который использует полный нелинейный динамический анализ для моделирования внезапного обрыва вант. Для этой цели составлены алгоритм и программа на языке ФОРТРАН. Ключевые выводы исследования:

- обрыве При внезапном вант воспринимают смежные ванты Это увеличение дополнительные натяжения. должно учитываться при проектировании моста с использованием динамического коэффициента, на который умножается окончательное натяжение ванта.
- Чтобы проследить действия обрыва вант в процедурах алгоритма, обрывающий вант удаляется и соответствующая его сила прикладывается в опорные узлы вант на балке жёсткости. После обрыва мост приходит к новому статическому положению, где динамический отклик происходит вокруг нового положения.

ЗАКЛЮЧЕНИЕ

При выполнении диссертационной работе получены следующие основные результаты и выводы:

- 1. На основе нелинейного математического моделирования разработан энергетический численный метод определения оптимального натяжения вант, обеспечивающий минимальные деформации моста. Для реализации этого метода создан собственный алгоритм и программа на языке ФОРТРАН, более эффективный по сравнению с алгоритмами, предложенными другими авторами.
- 2. Исследована эффективность несущей способности трёх схем вант: "арфа", "веер" и радиальная, показавшая, что по перемещениям радиальная схема является наиболее эффективной.
- 3. Выполнено специальное детальное сопоставление результатов предлагаемого метода с одной из последних работ по рассматриваемой теме, подтвердившее преимущество предлагаемого метода.
- 4. Предложена новая универсальная зависимость между прогибами балки жёсткости и пилонами, которую целесообразно использовать при предварительном проектировании моста.
- 5. Численно, по известной программе *SAP 2000*, исследованы частотные характеристики моста с представлением мультипликации. Исследование полностью выявило динамические характеристики моста, необходимые для динамического расчета.
- 6. Впервые аналитическим методом исследовано влияние продольных усилий в балке жесткости на значения частот свободных колебаний вантовых мостов. Вычисления выполнены для радиальной схемы вант с целью верификации результатов численного метода КЭ. Определены критические скорости ветра для вант и среднего пролета моста при ветровом резонансе.
- 7. Разработан новый специальный алгоритм нелинейного динамического расчёта на языке ФОРТРАН для исследования живучести вантового моста при внезапном обрыве вант, выявлен динамический эффект этого воздействия,

предложен динамический коэффициент для смежных вант при обрыве для рассматриваемой ситуации.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Ализаде Хое Шахрам.** Оптимизация параметров двухпилонных металлических вантовых мостов при их автоматизированном проектировании с применением ПК / Дис. на соискание ученой степени канд. техн. Наук. Москва. 2003. С 152.
- 2. **Ананьин, А.И.** Основные уравнения строительной в нелинейном расчете гибкой нити / А.И. Ананьин // Современные методы статического и динамического расчета сооружений и конструкций. Воронеж: изд-во ВГАСА. 2002. С. 69–75.
- 3. **Барановский, А.А.** Мосты больших пролетов / А.А. Барановский // Проектирование Висячих и Вантовых Мостов (курс лекций). 2003. С. 19.
- 4. **Бахтин С.А.** Учет геометрической нелинейности при оптимальном проектировании висячих пролетных строений мостов / С.А Бахтин // Автореферат дис. к. т. н. Новосибирск. 1982. 23с.
- 5. **Бахтин, С.А.** Висячие и вантовые мосты / С.А Бахтин. Волгоград: ВГТУ, 2002, С. 103.
- 6. **Бахтин, С.А.** Висячие и вантовые мосты. Проектирование, расчет, особенности конструирования / С.А. Бахтин, И.Г. Овчинников, Р.Р. Инамов. Саратов. 1999. С. 6-8.
- 7. **Болотин, В.В.** Вибрации в технике / В.В. Болотин // М., «Машиностроение».—1978. Том. 1—352 с.
- 8. **Гениев, Г.А.** Прочность и деформативность железобетонных конструкций при запроектны воздействиях [Текст] / Г.А. Гениев, В.И. Колчунов, Н.В. Клюева [и др.]. М.: АСВ, 2004. 216 с.
- 9. **Гончаров, В.М.** Деформационный расчет многопролетных висячих конструкций / В.М. Гончаров // Дис. канд. техн. наук. Новочеркасск. 1983. 146 с.

- 10. **Горелов, С.Н.** Результаты численных исследований вантового пешеходного моста через реку Урал / С.Н. Горелов, В.И. Жаданов, М.А. Аркаев // ВЕСТНИК ОГУ. Сентябрь 2012. Vol. 9, N 145. PP.177-183.
- 11. **Дмитриев, Ю.В.** Аналитические методы расчета висячих и вантовых мостов / Ю.В. Дмитриев, А.С. Дороган // Кафедра «Мосты и тоннели» . Хабаровск. –.2008. с.196.
- 12. **Зылев, В.Б.** Статический расчет нелинейных ните-стержневых систем / В.Б. Зылев, А.В. Штейн // Методические указания к выполнению индивидуальных домашних заданий по дисциплине "Динамика и устойчивость сооружений". Часть II. М. –1989. –36 с.
- 13. **Кадисов, Г.М.** Конечно-элементное моделирование динамики мостов при воздействии подвижной нагрузки / Г.М. Кадисов, В.В. Чернышов// Инженерно-строительный журнал. 2013. Vol. 9– PP.56-63
- 14. **Казакевич М.И.** Аэроупругая неустойчивость балочных мостов / М.И. Казакевич //Металлические конструкции. 2010. Том 16. №3. С. 163-170. [17]
- 15. **Качурин, В.К.** Проектирование висячих и вантовых мостов / В.К Качурин, А.В Брагин. М.: Транспорт, 1971. С. 280.
- 16. **Кириенко, В.И.** Вантовые мосты / В.И Кириенко. Киев: Будівельник, 1967, С. 144.
- 17. **Кирсанов, Н.М**. Висячие и вантовые конструкции / Н.М Кирсанов. М.: Стройиздат, 1981. С 158.
- 18. **Клюева, Н.В.** К анализу исследований живучести конструктивных систем при запроектных воздействиях [Текст] / Н.В. Клюева, А.С. Бухтиярова, Н.Б. Андросова // Строительство реконструкция. Орел ГТУ. 2009. № 4/24 (572). С. 15-21.
- 19. **Коренев, Б.Г.** Справочник по динамике сооружений / Б.Г. Коренев, И.М. Рабинович // М: Стройиздат.—1972.— 512 с.

- 20. **Крыльцов, Е.И.** Вантовые мосты / Е.И. Крыльцов. М.: Трансжелдориздат, 1935, C.239.
- 21. **Кушнерев, А.М.** Проектирование и расчет висячих и вантовых мостов / А.М. Кушнерев. Новосибирск, 1969. 102 с.
- 22. **Ле Ван Мань.** Разработка методики и программы автоматизации проектирования вантовых мостов со сталежелезобетонными балками жесткости / Дис. на соискание ученой степени канд. техн. наук. Москва. 2010. С 154.
- 23. **Масленников, А. М**. Ветровой резонанс вант мостов / А. М. Масленников, **Рагех Б. О** // Актуальные проблемы строительства и архитектуры: V Международная конференция СПБГАСУ. —2013, Часть I— С.338-342.
- 24. **Масленников, А. М**. Некоторые аспекты динамики вантового моста / А. М Масленников, **Рагех Б. О** // Вестник гражданских инженеров. 2014. Ч. 1(42). С. 37-43.
- 25. **Масленников, А.М.** Ветровой резонанс элементов мостов / А.М. Масленников, **Рагех Б. О** // Журнал «СТРОЙ МЕТАЛЛ». 2013. № 4(35). С. 20-22.
- 26. **Масленников, А.М.** Оценка конструктивной безопасности при динамическом воздействии [Текст] А.М. Масленников // Доклады 66 научн. конф. СПбГАСУ. СПб. 2009. С. 55-60.
- 27. **Назаров, Ю.П.** К проблеме обеспечения живучести строительных конструкций при аварийных воздействиях [Текст] / Ю.П. Назаров, А.С. Городецкий, В.Н. Симбиркин // Строительная механика и расчет сооружений. 2009. N = 4. C. 5-9.
- 28. **Нгуен Тхак Куанг.** Совершенствование программы автоматизированного проектирования двухпилонных металлических вантовых мостов / Дис. на соискание ученой степени канд. техн. наук. Москва. 2007. С 141.
- 29. **Овчинников, И.Г.** Висячие и вантовые мосты / И.Г Овчинников // Эстетические проблемы. Саратов: СГТУ, 2002. С. 108.

- 30. **Пановко Я.Г.** Устойчивость и колебания упругих систем / Я.Г. Пановко, И.И. Губанова // М., «Наука», 1964. 336 с.
- 31. **Петропавловский, А.А.** Вантовые мосты / А.А Петропавловский. М.: Транспорт, 1985. С. 224.
- 32. **Петропавловский, А.А.** Проектирование металлических мостов / А.А Петропавловский. М.: Транспорт, 1982. С. 202-316.
- 33. **Рагех Б. О.** Сравнение двух алгоритмов определения оптимального предварительного натяжения вант / Б. О. Рагех // Актуальные проблемы строительства и архитектуры: Материалы международной научно-практической конференции студентов, аспирантов, молодых ученых и докторантов СПБГАСУ. 2013. C.24-26.
- 34. **Рагех Б. О.** Статический анализ вантовых схем мостов системы (арфа) / Б. О Рагех // Актуальные проблемы строительства и архитектуры: СПБГАСУ. 2012, Часть I— С.12-16.
- 35. **Рагех Б. О.** Численный анализ вантовых схем большепролетных мостов/ Б. О Рагех // Актуальные проблемы строительства и архитектуры:. Материалы международной научно-практической конференции студентов, аспирантов, молодых ученых и докторантов СПБГАСУ. —2012, Часть II—С.100-103.
- 36. **Рагех Б. О.** Энергетический подход при анализе вантовых схем мостов системы «АРФА» / Б. О Рагех, //Вестник гражданских инженеров, . 2012— № 6(35) .— С. 60-67.
- 37. **Сафронов, В.С.** Расчет вантово-балочных систем по деформированной схеме / В.С Сафронов, А.Г. Рыдченко // Исследование висячих строительных конструкций.1. Воронеж. –1983. С. 3-12.
- 38. **Светлицкий В.А.** Сборник задач по теории колебаний. / В.А. Светлицкий, И.В. Стасенко // М., «Высшая школа».—1973. 454 с.
- 39. **Сергеев, Н.Д.** Проблемы оптимального проектирования конструкций / Н.Д. Сергеев, А.И Богатырев // Л., Стройиздат. 1971. 136 с.

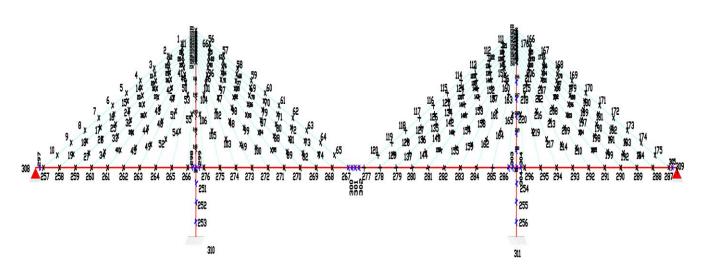
- 40. **Сильницкий, Ю.М.** Расчет висячих мостов по деформированной схеме / Ю.М Сильницкий // Изд.-во ЛИИЖТ. –1967. –108 с.
- 41. **Скворцов, А.В.** Расчетные модели гибкой нити применительно к висячим мостам и вантово-балочным системам / А.В. Скворцов // дис. на соискание ученой степени канд. техн. наук. М.: МИИТ. 2005. –248с.
- 42. **Смирнов, В.А**. Висячие мосты больших пролетов / В.А Смирнов. М.: Высшая школа, 1970. С.408.
- 43. **Фадеев, Д.К.** Вычислительные методы линейной алгебры / Д.К Фадеев, З.Н. Фадеева М.: Физматгиз. 1963. 735 с.
- 44. **ABBAS, S. A.** Nonlinear analysis of cable-stayed bridges / S. ABBAS, A. Scodelis // Proc.Int. Conference on Cable-Stayed and suspension bridges. Deauville, France. 1994. Vol.2 PP. 195-210.
- 45. **Adeli H.** Fully nonlinear analysis of composite girder cable- stayed bridges / H. Adeli, J. Zhang // Computer and structures. –1995. –Vol. 54. PP. 267-277.
- 46. **Astiz, M.A.** The Non-Linear Structural Problem in Cable-Stayed Bridges / M.A. Astiz, J. Manterola // Numerical Methods for Non-Linear Problems. 1980. Vol. 1. PP. 343-353.
- 47. **Baldomir, A.** Cable optimization of a long span cable stayed bridge in La Coruña (Spain) / A. Baldomir, S. Hernandez, F. Nieto , J.A. Jurado // Advances in Engineering Software. 2010. Vol. 41.– PP. 931–938.
- 48. **Baron, F.** Analytical studies of a cable stayed girder bridge / F Baron, S.Y. Lien // Computer and structures. −1973. − Vol. 3. № 3. − PP. 443-465.
- 49. **Blesson B, Thomas.** Parametric Study of Shapes of Pylon for Cable Stayed Bridge / Thomas Blesson B, S. P. Thakkar // NIRMA Universitty JournaL Of Engineering And Technology. JAN-JUN 2011.— Vol. 2. №1. PP. 9-16.
- 50. **Brownjohn, James M.W.** Dynamic performance of a curved cable-stayed bridge / James M.W. Brownjohn, Lee. Jeffery, Cheong Bernard // Engineering Structures. 1999. Vol. 21. PP.1015–1027.

- 51. **Bruno, D.** A 3D nonlinear static analysis of long-span cable stayed bridges / D. Bruno, F. Greco, P. Nevone Blasi, E. Bianchi // Annals of Solid and Structural Mechanics. 2013. Vol. 5. № 2., 2013. PP. 15-34.
- 52. **Buchholdt, H. A.** An introduction to cable roof structures / H. A. Buchholdt. London: Cambridge University press. 1985. PP. 56–75.
- 53. **Buchholdt, H. A.** An introduction to cable roof structures / H. A, Buchholdt // Cambridge University press, London, Second edition, 1999.– P. 304.
- 54. **Chen Wai Fah.** Bridge Engineering Handbook / Wai Fah Chen, Duan lian // CRS Press LLC. 1999. PP.19-1, 19-18.
- 55. **Chen, DW.** Determination of initial cable forces in prestressed concrete cable-stayed bridges for given design deck profiles using the force equilibrium method / DW Chen, Au. FTK, Tham. LG, Lee. PKK // J Comput Struct. 2000. Vol. 74 PP.1-9.
- 56. **Cheng, S.H.** Modeling of cable vibration effects of cable-stayed bridges / S.H. Cheng, Lau. David T// Earthquake Engineering And Engineering Vibration, Canada. -2002. Vol. 1, N. 1. PP.74-85.
- 57. **Cheung, MS.** Nonlinear analysis of cable-stayed bridge by finite strip method / MS. Cheung, W. Li, LG. Jaeger // Computers & Structures . − 1988. − Vol. 29. №4. − PP. 687–692.
- 58. **Chin- Shing, Kao.** The influence of broken cables on the structural behavior of long- span cable- stayed bridges / Kao Chin- Shing, Kao. Chang- Huan // Journal of Marine Science and Technology, 2010. –Vol. 18(3).– PP. 395-404.
- 59. **Clough, Ray W.** Dynamic of structures / Ray W. Clough, Penzien Joseph // Computer and structures, Third Edition. 2003.– PP. 201-202.
- 60. **Ernst, H.J.** Der e-modul von seilen unter beruecksichtigung des durchhanges. Der Bauingenieur / H.J. Ernst. − 1965. − Vol. 40. №2. − PP.52–55.
- 61. **F.T.K, Au**. On the determination of natural frequencies and mode shapes of cable- stayed bridges / Au. F.T.K, Y.S. Cheng, Y.K. Cheng, D.Y Zheng // Applied mathematical modeling. —2001. Vol. 25. PP.1099-1115.

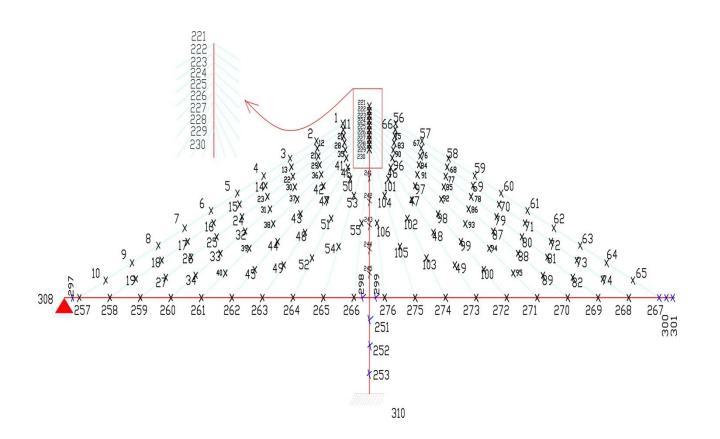
- 62. **Fleming, J.F.** Nonlinear static analysis of cable-stayed bridge structures / J.F Fleming // Computer and Structures. −1979. −Vol. 10. №4. − PP. 621-635.
- 63. **Freires, A.M.S.** Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges / A.M.S. Freires, J.H.O. Negrao, A.V. Lopes // Comp. & Struct. 2006. Vol. 84. PP. 2128–2140.
- 64. **Gimsing, N.J.** Cable Supported Bridges (Concept and Design) / **N.J.** Gimsing //, John Wiley and Sons. New York. 1993. PP. 149, 164.
- 65. **Gimsing, N.J.** Cable Supported Bridges: Concept and Design (Third Edition) / N.J. Gimsing, C.T. Georgakis // John Wiley and Sons, New York. –2012. P.590.
- 66. **Gomez, Roberto.** Analysis of a Cable-Stayed Bridge: The Case of The Baluarte Bridge / Roberto. Gomez, Ronald. Gomez, Adrián Pozos, José A. Escobar, Raúl Sanchez //IABSE Symposium, Venice. 2010.— Vol. 8. PP. 219-226.
- 67. **GSA** (United States General Services Administration). Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Project, Washington, DC, 2003.– PP. 2-9.
- 68. **Hal, S.** A note of the I-35W bridge collapse / S. Hal //Journal Bridge Engineering, 2010. –Vol. 15(5).– PP. 608-614.
- 69. **Hashamdar, H.** Mathematical modeling for analysis cable structures / H. Hashamdar, M. Tahir, Z. Ibrahim, M. Jameel, H.B. Mahmud, Jahangirzadeh // Scientific Research and Essays. 2011. Vol.6. № 32.– PP. 6681-6694.
- 70. **Hassan, M.** Optimum Design of Cable-Stayed Bridges / M. Hassan // PhD Thesis, The University of Western Ontario. Canada. 2010– PP.198.
- 71. **Hegab, H. I. A.** Energy Analysis of Cable-Stayed Bridges / H. I. A. Hegab // Struct. Engrg, ASCE. 1986. Vol. 112. №5. PP.1182-1195.
- 72. **Huddleston, J.V.** Computer Analysis of Extensible Cables / J.V. Huddleston // J. Eng. Mechanics Div, ASCE. –1981. Vol. 107, 1981. PP. 27-37.

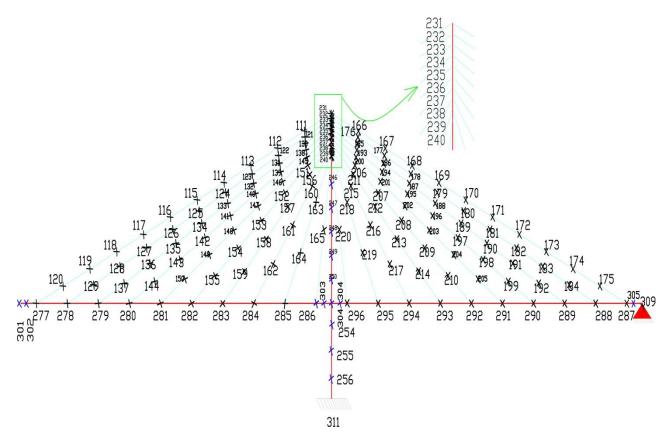
- 73. **Huddleston, J.V.** Poisson Effect in Extensible Cables with both ends fixed / J.V. Huddleston, H. J. Ham // J. Eng. Mechanics Div., ASCE. Vol. 1994. Vol. 120. PP. 1590-1595.
- 74. **Janjic, D.** Optimization of cable tensioning in cable-stayed bridges / D. Janjic, M. Pircher, H. Pircher // J Bridge Eng ASCE. 2003. Vol. 8 PP.131-137.
- 75. **Jian-guo, Cai.** Comparison of various procedures for progressive collapse analysis of cable-stayed bridges / Cai. Jian-guo, X.U. Yi-xiang, Li-ping Zhuang, Jian. Feng, Jin. Zhang // Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2012. –Vol. 13(5).– PP. 323-334.
- 76. **Kanok-Nukulchai W.** Nonlinear Modelling of cable-Stayed bridges / W. Kanok-Nukulchai, G. Hong // J. Construct. Steel Research. 1993. Vol.26– PP. 249-266.
- 77. **Kanok-Nukulchai, W.** Mathematical Modelling of cable-stayed bridges / W. Kanok-Nukulchai, P.K.A. Yiu, D.M. Brotton // Struc. Eng. Int. 1992. Vol. 2. PP. 108-113.
- 78. **Karoumi, R.** Some modeling aspects in the nonlinear finite element analysis of cable supported bridges / R. Karoumi // Computer and structures. 1999. Vol. 71. №4. PP.397-412.
- 79. **Lazar, B. E.** Stiffness Analysis of Cable-Stayed Bridge / B. E Lazar // J. Struct. Div, ASCE. 1972. Vol. ST7. PP.1605-1612.
- 80. **Lee, TY.** Optimization of tensioning strategy for asymmetric cable-stayed bridge and its effect on construction process / TY. Lee, YH. Kim, SW Kang // J Struct Multidisc Optim. 2008. Vol. 35– PP.623-629.
- 81. **Mario, P.** Structural dynamics theory and computation / P. Mario, L. William // Kluwer Academic Publishers Fifth Edition, 2004.– PP. 182–184.
- 82. **Marko Justus Grabow.** Construction Stage Analysis of Cable-Stayed Bridges / Grabow Marko Justus // Thesis in partial fulfillment of the requirements for the degree of diploma Inginur. Hamburg, Germany. 2004. P.267.

- 83. **Maslennikov, A.M.** The comparison between two Algorithms for evaluating of the optimum initial tension in cables / A.M. Maslennikov, **Rageh B.O** // Актуальные проблемы строительства и архитектуры: V Международная конференция СПБГАСУ. —2013, Часть I— С.332-337.
- 84. **Metin, H. U.** The Behavior of Cable-Stayed Bridges Having Different Cable Arrangements under Static and Dynamic Loads / H.U. Metin, P.U. Selim, Z.I. Yousef, M. Arslan // GEMESED'11 Proceedings of the 4th WSEAS international conference on Energy and development environment. 2011. PP.242-246.
- 85. **Monforton, G. R.** Analysis of Truss-Cable Structures / G. R Monforton, N. M. EI-Hakim // Computers & Structures. –1980. Vol. 11– PP. 327-335.
- 86. **Morgenthal, Gu.** Cable stayed bridges- Earthquake response and passive control / Gu. Morgenthal // Msc dissertation: Civil Engineering department, London SW7 2BU. 1999. PP.18.
- 87. **Nazmy, A. S.** Three-Dimensional Nonlinear Static Analysis of Cable-Stayed Bridges / A. S. Nazmy, A. M. Abdel-Ghaffar // Comp. & Struct. −1990. − Vol. 34. № 2. − PP. 257-271.
- 88. **Negrao, J.H.O.** Optimization of cable-stayed bridges with three-dimensional modeling / J.H.O. Negrao, L.M.C. Simoes // J Comput Struct. 1997. Vol. 64. PP.741-758.
- 89. **Piegl, L.** On NURBS: a survey / L. Piegl // Computer Graphics and Applications, IEEE. 1991– Vol. 11. №1– PP.55-71.
- 90. **Pourazady, M.** Direct manipulations of B-spline and NURBS curves / M. Pourazady, X. Xu // Advances in Engineering Software. − 2000− Vol. 31. №2− PP.107-118.
- 91. **Qingxiong, W.u.** Dynamic Characteristics of Megami Cable-stayed Bridge "A Comparison of Experimental and Analytical Results" / W.u. Qingxiong, Yuichi Kitahara, Kazuo Takahashi, Baochun Chen // Steel structures. 2008. Vol.8. PP. 1-9.


- 92. **Qingxiong, Wu.** Analysis of Local Vibrations in the Stay Cables of an Existing Cable-stayed Bridge under Wind Gusts / Wu. Qingxiong, Kazuo. Takahashi, Chen Baochun // Structural Engineering and Mechanics. 2008.— Vol.30. №5. PP.513-534.
- 93. **Rageh, B.O.** Deck Pylon displacement relationship in the non-linear static analysis of cable stayed bridges. (Отношение деформации балка жесткостипилон при нелинейном статическом анализе вантовых мостов) / B.O. Rageh // Bulletin of Civil Engineers. 2014. Vol. 3, N 44. P. 102-106.
- 94. **Rageh, B.O.** Deformation of three types of cable-stayed bridge under static load (Деформации трех типов вантового моста при статической нагрузке) / B.O. Rageh // Bulletin of Civil Engineers. 2013. Vol. 6(41). PP. 47–52.
- 95. **Rageh, B.O.** Non Linear Static and Modal Analysis of Three Types of Cable-Stayed Bridges / B.O. Rageh, A.M. Maslennikov // Journal of Mathematical Theory and Modeling IISTE. 2013. Vol. 3(12). PP. 92-97.
- 96. **Rajaraman, A.** Nonlinear Analysis of Cable-Stayed Bridges / A. Rajaraman, K. Loganathan, N. V. Raman // IABSE Proc. November 1980. PP. 37-80.
- 97. **Ruiz-Teran, A.M.** Dynamic amplification factors in cable-stayed structures / A.M. Ruiz-Teran, A.C. Aparicio // Journal of Sound and Vibration, 2007. Vol. 300. PP. 197-216.
- 98. **Saafan, S. A.** Non-linear behavior of Structural Plane Frames / S. A Saafan // Proceeding of the American Society of Civil Engineers. −1963. − Vol.89. № ST4. − PP.557-559.
- 99. **Seok Kim, Ki.** Analysis of target configurations under dead loads for cable- supported bridges / Ki. Seok Kim, Hae Sung Lee // Computer and structures. 2001. Vol.79.– PP. 2681-2692.
- 100. **Simoes, L.M.C.** Optimization of cable-stayed bridges with box-girder decks / L.M.C. Simoes, J.H.J.O. Negrao // J Adv. Eng. Software. 2000. Vol. 31–PP.417-423.

- 101. **Smith, B. S.** The single plane cable-stayed girder bridge: a method of analysis suitable for computer use / B. S Smith // Proc. Inst. Civ. Eng. 1967. Vol. 37. PP. 183-194.
- 102. **Smith, B.S.** Linear method of analysis for double plane cable-supported girder bridge / B.S Smith // Proc. Inst. Civ. Engineers. 1968. Vol. 39. PP 85-94.
- 103. **Starossek, U.** Progressive Collapse of Bridges. Aspects of Analysis and Design / U. Starossek// Proceedings of the International Symposium on Sea-Crossing Long-Span Bridges, Mokpo, Korea, 2006.—PP. 1-22.
- 104. **Stefanou, G. D.** Conjugate gradients for calculating the response of large cable nets to static loads / G. D. Ste- fanou, E. Moossavi, S. Bishop et al. // Computers & Struc- tures. 1993. Vol. 49, N 5. PP. 843–848.
- 105. **Stefanou, G. D.** General method for the analysis of cable assemblies with ixed and lexibe elastic boundaries / G. D. Stefanou, S. E. M. Nejad // Computers & Structures. 1995. Vol. 55, N 5. PP. 897–905.
- 106. **Sukhen Chatterjee.** The design of modern steel structures (Second Edition) / Chatterjee Sukhen // Wiley Blackwell. 2003. PP.183-187.
- 107. **Sung, YC.** Optimum post-tensioning cable forces of Mau-Lo His cable-stayed bridge / YC. Sung, DW. Chang, EH. Teo // J Engineering Structures. 2006. Vol. 28.– PP. 1407-1417.
- 108. **Tang, M.C.** Analysis of cable-supported girder bridges / M.C Tang // J. Struct. Div. ASCE. −1971. Vol. 97 . № ST5. PP. 1481-1496.
- 109. **Tao Zhang.** Dead Load Analysis of Cable-Stayed Bridge / Tao. Zhang, Wu ZhiMin // International Conference on Intelligent Building and Management: IACSIT Press, Singapore. 2011. Vol. 5.– PP. 270-274.
- 110. **Troitsky, M.S.** Cable- stayed bridges (Theory and design) 2^{nd} / M.S Troitsky //Advision of Blackwell scientific. -1988. -477 p.
- 111. **Walter Podolny, Jr.** Historical Developments of Cable- Stayed Bridges / Jr. Walter Podolny, J.F. Fleming // Journal of the Structural Division: Proceeding of the American Society of Civil Engineers. −1972. − Vol. 98. № 9. − PP. 2079–2095.


- 112. **Walter, R.** Cable Stayed Bridges (Second Edition) / R. Walter, B. Houriet, W. Isler, p. Moia, J.F. klein. London. Thomas Telford. 1999. P.234.
- 113. **Wang, Pao-Hsii.** Study on nonlinear analysis of a highly redundant cable-stayed bridge bridges / Pao-Hsii. Wang, Hung-Ta. Lin, Tzu-Yang Tang // Computer and structures. 2002. Vol. 80. № 2. PP.165-182.
- 114. **Wang, PH.** Initial shape of cable-stayed bridges / PH. Wang, TC. Tseng, CG. Yang // J Comput Struct . 1993. Vol. 46. PP.1095-1106.
- 115. **Wang, PH.** Parametric studies on cable-stayed bridges / PH. Wang, CG Yang // Computers & Structures. 1995. Vol. 60. № 2. PP. 243–260.
- 116. **Wilson J. C.** Modelling of a Cable-stayed Bridge for Dynamic Analysis / J.C. Wilson , W. Gravelle // Earthquake Eng & Struct Dyn. —1991.— Vol. 20— PP 707-721.
- 117. **Wolff, M.** Cable-loss analyses and collapse behavior of cable-stayed bridges / M. Wolff, U. Starossek // IABMAS, the Fifth International Conference on Bridge Maintenance, Safety and Management. Philadelphia, USA, July 11-15, 2010.
- 118. **Wolff, M.** Robustness assessment of a cable-stayed bridge / M. Wolff, U. Starossek // IABMAS'08: International Conference on Bridge Maintenance, Safety and Management, Seoul, Korea. July 13-17, 2008.– PP.1-8.
- 119. **Yan, D.** Vulnerability assessment of cable-stayed bridges in probabilistic domain / D. Yan, C.C. Chang // Journal of Bridge Engineering. 2009. –Vol. 14(4).–PP. 270-278.
- 120. **YuHee, Kim.** Effects of cable rupture on dynamic responses of a concrete cable-stayed Bridge / Kim. YuHee, Go. Hyeong, Jae. Cheon Kim, Shin. Soobong // Journal of the Korea institute for structural maintenance and inspection . 2012. Vol. 16 (3) .– PP. 84-91 (in Korean).
- 121. **Zhang, Q**. Finite-Element Model Updating for the Kap Shui Mun Cable-Stayed Bridge / Q. Zhang, T. Chang, C. Chang // J. Bridge Eng. 2001.— Vol. 6. №4. PP. 285–293.


ПРИЛОЖЕНИЯ

ПРИЛОЖЕНИЕ.1

Расчетная схема моста H/L=1/5, схема веер, вариант $1(d_1=d_2)$

Координаты для узловых точек (узлы вант) - Npjc=220(общее число в модели)

Nnic	x-m	7-m	Nnic	v.m	z-m	Nnic	v.m	7.m	
Npjc 1	182.73	72.73	Npjc 41	185	58.33		x-m 300		
2			41			81			
	165.45	65.45		1,0					
3	148.18	58.18			35		333.33	8.44	
4	130.91	50.91	44	140	23.33	83	216.25	64.75	
5	113.64	43.64	45	125	11.67	84	232.5	55.5	
6	96.36	36.36	46	186	54.4	85	248.75	46.25	
7	79.09	29.09	47	172	40.8	86	265	37	
8	61.82	21.82	48	158	27.2	87	281.25	27.75	
9	44.55	14.55	49	144	13.6	88	297.5	18.5	
10	27.27	7.27	50	187.5	49.5	89	313.75	9.25	
11	183	70.2	51	175	33	90	215.71	61.71	
12	166	62.4	52	162.5	16.5	91	231.43	51.43	
13	149	54.6	53	190	42.67	92	247.14	41.14	
14	132	46.8	54	180	21.33	93	262.86	30.86	
15	115	39	55	195	31	94	278.57	20.57	
16	98	31.2	56	217.27	72.73	95	294.29	10.29	
17	81	23.4	57	234.55	65.45	96	215	58.33	
18	64	15.6	58	251.82	58.18	97	230	46.67	
19	47	7.8	59	269.09	50.91	98	245	35	
20	183.33	67.56	60	286.36	43.64	99	260	23.33	
21	166.67	59.11	61	303.64	36.36	100	275	11.67	
22	150	50.67	62	320.91	29.09	101	214	54.4	

23	133.33	42.22	63	338.18	21.82	102	228	40.8
24	116.67	33.78	64	355.45	14.55	103	242	27.2
25	100	25.33	65	372.73	7.27	104	256	13.6
26	83.33	16.89	66	217	70.2	105	212.5	49.5
27	66.67	8.44	67	234	62.4	106	225	33
28	183.75	64.75	68	251	54.6	107	237.5	16.5
29	167.5	55.5	69	268	46.8	108	210	42.67
30	151.25	46.25	70	285	39	109	220	21.33
31	135	37	71	302	31.2	110	205	31
32	118.75	27.75	72	319	23.4	111	582.73	72.73
33	102.5	18.5	73	336	15.6	112	565.45	65.45
34	86.25	9.25	74	353	7.8	113	548.18	58.18
35	184.29	61.71	75	216.67	67.56	114	530.91	50.91
36	168.57	51.43	76	233.33	59.11	115	513.64	43.64
37	152.86	41.14	77	250	50.67	116	496.36	36.36
38	137.14	30.86	78	266.67	42.22	117	479.09	29.09
39	121.43	20.57	79	283.33	33.78	118	461.82	21.82
40	105.71	10.29	80	300	25.33	119	444.55	14.55
Npjc	x-m	z-m	Npjc	x-m	z-m			
120	427.3	7.27	140	551.3	46.25			
121	583	70.2	141	535	37			
122	566	62.4	142	518.8	27.75			
123	549	54.6	143	502.5	18.5			
124	532	46.8	144	486.3	9.25			
125	515	39	145	584.3	61.71			
126	498	31.2	146	568.6	51.43			
127	484	23.4	147	552.9	41.14			
128	464	15.6	148	537.1	30.86			
129	447	7.8	149	521.4	20.57			
130	583.3	67.56	150	505.7	10.29			
131	566.7	59.11	151	585	58.33			
132	550	50.67	152	570	46.67			
133	533.3	42.22	153	555	35			
134	516.7	33.78	154	540	23.33			
135	500	25.33	155	525	11.67			
136	483.3	16.89	156	586	54.4			
137	466.7	8.44	157	572	40.8			
138	583.8	64.75	158	558	27.2			
139	567.5	55.5	159	544	13.6			
Npjc	x-m	z-m	Npjc	x-m	z-m			
160	587.5	49.5	200	615.71	61.71			
161	575	33	201	631.43	51.43			
162	562.5	16.5	202	647.14	41.14			
163	590	42.67	203	662.86	30.86			
164	580	21.33	204	678.57	20.57			
165	595	31	205	694.29	10.29			
166	617.27	72.73	206	615	58.33			

167	634.55	65.45	207	630	46.67
168	651.82	58.18	208	645	35
169	669.09	50.91	209	660	23.33
170	686.36	43.64	210	675	11.67
171	703.64	36.36	211	614	54.4
172	720.91	29.09	212	628	40.8
173	738.18	21.82	213	642	27.2
174	755.45	14.55	214	656	13.6
175	772.73	7.27	215	612.5	49.5
176	617	70.2	216	625	33
177	634	62.4	217	637.5	16.5
178	651	54.6	218	610	42.67
179	668	46.8	219	620	21.33
180	685	39	220	605	31
181	702	31.2			
182	719	23.4			
183	736	15.6			
184	753	7.8			
185	616.67	67.56			
186	633.33	59.11			
187	650	50.67			
188	666.67	42.22			
189	683.33	33.78			
190	700	25.33			
191	716.67	16.89			
192	733.33	8.44			
193	616.25	64.75			
194	632.5	55.5			
195	648.75	46.25			
196	665	37			
197	681.25	27.75			
198	697.5	18.5			
199	713.75	9.25			

Координаты для жестких узлы:для пилона общее число Nrjp=36; для балки жесткости Nrjd=51; координаты опор Nrsup=4

Nrjp	x-m	z-m	Nrjd	x-m	Nrjd	x-m	Nsup	x-m	z-m
221	200	80	257	10	293	670	308	0	0
222	200	78	258	30	294	650	309	800	0
223	200	76	259	50	295	630	310	200	-40
224	200	74	260	70	296	610	311	600	-40
225	200	72	261	90	297	5			
226	200	70	262	110	298	195			
227	200	68	263	130	299	205			
228	200	66	264	150	300	395			

229	200	64	265	170	301	400
230	200	62	266	190	302	405
231	600	80	267	390	303	595
232	600	78	268	370	304	605
233	600	76	269	350	305	795
234	600	74	270	330	306	200
235	600	72	271	310	307	600
236	600	70	272	290		
237	600	68	273	270		
238	600	66	274	250		
239	600	64	275	230		
240	600	62	276	210		
241	200	51.67	277	410		
242	200	41.33	278	430		
243	200	31	279	450		
244	200	20.67	280	470		
245	200	10.33	281	490		
246	600	51.67	282	510		
247	600	41.33	283	530		
248	600	31	284	550		
249	600	20.67	285	570		
250	600	10.33	286	590		
251	200	-10	287	790		
252	200	-20	288	770		
253	200	-30	289	750		
254	600	-10	290	730		
255	600	-20	291	710		
256	600	-30	292	690		

Номера элементов ---Мп-и их свойства

MN	start	END	Α	E	L	MN	start	END	Α	E	L
1	221	1	0.011015	14720000	18.74	41	257	10	0.011015	14720000	18.74
2	221	56	0.011015	14720000	18.74	42	258	19	0.011015	14720000	18.7
3	222	11	0.011015	14720000	18.7	43	259	27	0.011015	14720000	18.68
4	222	66	0.011015	14720000	18.7	44	260	34	0.011015	14720000	18.7
5	223	20	0.011015	14720000	18.68	45	261	40	0.011015	14720000	18.78
6	223	75	0.011015	14720000	18.68	46	262	45	0.011015	14720000	19
7	224	28	0.011015	14720000	18.7	47	263	49	0.011015	14720000	19.52
8	224	83	0.011015	14720000	18.7	48	264	52	0.011015	14720000	20.7
9	225	35	0.011015	14720000	18.78	49	265	54	0.011015	14720000	23.56
10	225	90	0.011015	14720000	18.78	50	266	55	0.011015	14720000	31.4
11	226	41	0.011015	14720000	19	51	267	65	0.011015	14720000	18.74
12	226	96	0.011015	14720000	19	52	268	74	0.011015	14720000	18.7
13	227	46	0.011015	14720000	19.52	53	269	82	0.011015	14720000	18.68

14	227	101	0.011015	14720000	19.52	54	270	89	0.011015	14720000	18.7
15	228	50	0.011015	14720000	20.7	55	271	95	0.011015	14720000	18.78
16	228	105	0.011015	14720000	20.7	56	272	100	0.011015	14720000	19
17	229	53	0.011015	14720000	23.56	57	273	104	0.011015	14720000	19.52
18	229	108	0.011015	14720000	23.56	58	274	107	0.011015	14720000	20.7
19	230	55	0.011015	14720000	31.4	59	275	109	0.011015	14720000	23.56
20	230	110	0.011015	14720000	31.4	60	276	110	0.011015	14720000	31.4
21	231	111	0.011015	14720000	18.74	61	277	120	0.011015	14720000	18.74
22	231	166	0.011015	14720000	18.74	62	278	129	0.011015	14720000	18.7
23	232	121	0.011015	14720000	18.7	63	279	137	0.011015	14720000	18.68
24	232	176	0.011015	14720000	18.7	64	280	144	0.011015	14720000	18.7
25	233	130	0.011015	14720000	18.68	65	281	150	0.011015	14720000	18.78
26	233	185	0.011015	14720000	18.68	66	282	155	0.011015	14720000	19
27	234	138	0.011015	14720000	18.7	67	283	159	0.011015	14720000	19.52
28	234	193	0.011015	14720000	18.7	68	284	162	0.011015	14720000	20.7
29	235	145	0.011015	14720000	18.78	69	285	164	0.011015	14720000	23.56
30	235	200	0.011015	14720000	18.78	70	286	165	0.011015	14720000	31.4
31	236	151	0.011015	14720000	19	71	287	175	0.011015	14720000	18.74
32	236	206	0.011015	14720000	19	72	288	184	0.011015	14720000	18.7
33	237	156	0.011015	14720000	19.52	73	289	192	0.011015	14720000	18.68
34	237	211	0.011015	14720000	19.52	74	290	199	0.011015	14720000	18.7
35	238	160	0.011015	14720000	20.7	75	291	205	0.011015	14720000	18.78
36	238	215	0.011015	14720000	20.7	76	292	210	0.011015	14720000	19
37	239	163	0.011015	14720000	23.56	77	293	214	0.011015	14720000	19.52
38	239	218	0.011015	14720000	23.56	78	294	217	0.011015	14720000	20.7
39	240	165	0.011015	14720000	31.4	79	295	219	0.011015	14720000	23.56
39 40	240 240	165 220	0.011015 0.011015	14720000 14720000	31.4 31.4	79 80	295 296	219 220	0.011015 0.011015	14720000 14720000	23.56 31.4
40	240	220	0.011015	14720000	31.4	80	296	220	0.011015	14720000	31.4
		220									
40	240	220	0.011015	14720000	31.4	80	296	220	0.011015	14720000	31.4
40 MN	240 start	220 END	0.011015 A	14720000 E	31.4 L	80 MN	296 start	220 END	0.011015 A	14720000 E	31.4 L
40 MN 81	240 start 1	220 END 2	0.011015 A 0.011015	14720000 E 14720000	31.4 L 18.74	80 MN 121	296 start 47	220 END 48	0.011015 A 0.011015	14720000 E 14720000	31.4 L 19.52
40 MN 81 82	240 start 1 2	220 END 2 3	0.011015 A 0.011015 0.011015	14720000 E 14720000 14720000	31.4 L 18.74 18.74	80 MN 121 122	296 start 47 48	220 END 48 49	0.011015 A 0.011015 0.011015	14720000 E 14720000 14720000	31.4 L 19.52 19.52
40 MN 81 82 83	240 start 1 2 3	220 END 2 3 4	0.011015 A 0.011015 0.011015 0.011015	14720000 E 14720000 14720000 14720000	31.4 L 18.74 18.74 18.74	80 MN 121 122 123	296 start 47 48 50	220 END 48 49 51	0.011015 A 0.011015 0.011015 0.011015	14720000 E 14720000 14720000 14720000	31.4 L 19.52 19.52 20.7
40 MN 81 82 83 84	240 start 1 2 3 4	220 END 2 3 4 5	0.011015 A 0.011015 0.011015 0.011015 0.011015	14720000 E 14720000 14720000 14720000 14720000	31.4 L 18.74 18.74 18.74	80 MN 121 122 123 124	296 start 47 48 50 51	220 END 48 49 51 52	0.011015 A 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000	31.4 L 19.52 19.52 20.7 20.7
40 MN 81 82 83 84 85	240 start 1 2 3 4 5	220 END 2 3 4 5 6	0.011015 A 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000	31.4 L 18.74 18.74 18.74 18.74	MN 121 122 123 124 125	296 start 47 48 50 51 53	220 END 48 49 51 52 54	0.011015 A 0.011015 0.011015 0.011015 0.011015	14720000 E 14720000 14720000 14720000 14720000	31.4 L 19.52 19.52 20.7 20.7 23.56
40 MN 81 82 83 84 85 86	240 start 1 2 3 4 5 6	220 END 2 3 4 5 6 7	0.011015 A 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000	18.74 18.74 18.74 18.74 18.74 18.74	MN 121 122 123 124 125 126	296 start 47 48 50 51 53 56	220 END 48 49 51 52 54 57	0.011015 A 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000	31.4 L 19.52 19.52 20.7 20.7 23.56 18.74
81 82 83 84 85 86 87	240 start 1 2 3 4 5 6 7	220 END 2 3 4 5 6 7 8	0.011015 A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000	18.74 18.74 18.74 18.74 18.74 18.74 18.74	80 MN 121 122 123 124 125 126 127	296 start 47 48 50 51 53 56 57	220 END 48 49 51 52 54 57 58	0.011015 A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	31.4 L 19.52 19.52 20.7 20.7 23.56 18.74 18.74
40 MN 81 82 83 84 85 86 87 88	240 start 1 2 3 4 5 6 7 8	220 END 2 3 4 5 6 7 8 9	0.011015 A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	18.74 18.74 18.74 18.74 18.74 18.74 18.74	MN 121 122 123 124 125 126 127 128	296 start 47 48 50 51 53 56 57 58	220 END 48 49 51 52 54 57 58 59	0.011015 A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	31.4 L 19.52 19.52 20.7 20.7 23.56 18.74 18.74 18.74
40 MN 81 82 83 84 85 86 87 88 89	240 start 1 2 3 4 5 6 7 8 9	220 END 2 3 4 5 6 7 8 9 10	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.74	80 MN 121 122 123 124 125 126 127 128 129	296 start 47 48 50 51 53 56 57 58 59	220 END 48 49 51 52 54 57 58 59 60	0.011015 A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	31.4 L 19.52 19.52 20.7 20.7 23.56 18.74 18.74 18.74
81 82 83 84 85 86 87 88 89 90	240 start 1 2 3 4 5 6 7 8 9 11	220 END 2 3 4 5 6 7 8 9 10 12	0.011015 A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.74	MN 121 122 123 124 125 126 127 128 129 130	296 start 47 48 50 51 53 56 57 58 59 60	220 END 48 49 51 52 54 57 58 59 60 61	0.011015 A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	31.4 L 19.52 19.52 20.7 20.7 23.56 18.74 18.74 18.74 18.74
40 MN 81 82 83 84 85 86 87 88 89 90 91	240 start 1 2 3 4 5 6 7 8 9 11 12	220 END 2 3 4 5 6 7 8 9 10 12 13	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.7 18.7	MN 121 122 123 124 125 126 127 128 129 130 131	296 start 47 48 50 51 53 56 57 58 59 60 61	220 END 48 49 51 52 54 57 58 59 60 61 62	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	31.4 L 19.52 19.52 20.7 20.7 23.56 18.74 18.74 18.74 18.74 18.74
40 MN 81 82 83 84 85 86 87 88 89 90 91 92	240 start 1 2 3 4 5 6 7 8 9 11 12 13	220 END 2 3 4 5 6 7 8 9 10 12 13 14	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.7 18.7	MN 121 122 123 124 125 126 127 128 129 130 131 132	296 start 47 48 50 51 53 56 57 58 59 60 61 62	220 END 48 49 51 52 54 57 58 59 60 61 62 63	0.011015 A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	31.4 L 19.52 19.52 20.7 20.7 23.56 18.74 18.74 18.74 18.74 18.74 18.74 18.74
40 MN 81 82 83 84 85 86 87 88 89 90 91 92 93	240 start 1 2 3 4 5 6 7 8 9 11 12 13 14	220 END 2 3 4 5 6 7 8 9 10 12 13 14 15	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.7 18.7 18.7	80 MN 121 122 123 124 125 126 127 128 129 130 131 132 133	296 start 47 48 50 51 53 56 57 58 59 60 61 62 63	220 END 48 49 51 52 54 57 58 59 60 61 62 63 64	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	31.4 L 19.52 19.52 20.7 20.7 23.56 18.74 18.74 18.74 18.74 18.74 18.74
40 MN 81 82 83 84 85 86 87 88 89 90 91 92 93 94	240 start 1 2 3 4 5 6 7 8 9 11 12 13 14 15	220 END 2 3 4 5 6 7 8 9 10 12 13 14 15 16	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.74 18.7 18.7 18.7 18.7	80 MN 121 122 123 124 125 126 127 128 129 130 131 132 133 134	296 start 47 48 50 51 53 56 57 58 59 60 61 62 63 64	220 END 48 49 51 52 54 57 58 59 60 61 62 63 64 65	0.011015 A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	31.4 L 19.52 19.52 20.7 20.7 23.56 18.74 18.74 18.74 18.74 18.74 18.74 18.74

	98	20	21	0.011015	14720000	18.68	138	69	70	0.011015	14720000	18.7
	99	21	22	0.011015	14720000	18.68	139	70	71	0.011015	14720000	18.7
	100	22	23	0.011015	14720000	18.68	140	71	72	0.011015	14720000	18.7
	101	23	24	0.011015	14720000	18.68	141	72	73	0.011015	14720000	18.7
	102	24	25	0.011015	14720000	18.68	142	73	74	0.011015	14720000	18.7
	103	25	26	0.011015	14720000	18.68	143	75	76	0.011015	14720000	18.68
	104	26	27	0.011015	14720000	18.68	144	76	77	0.011015	14720000	18.68
	105	28	29	0.011015	14720000	18.7	145	77	78	0.011015	14720000	18.68
	106	29	30	0.011015	14720000	18.7	146	78	79	0.011015	14720000	18.68
	107	30	31	0.011015	14720000	18.7	147	79	80	0.011015	14720000	18.68
	108	31	32	0.011015	14720000	18.7	148	80	81	0.011015	14720000	18.68
	109	32	33	0.011015	14720000	18.7	149	81	82	0.011015	14720000	18.68
	110	33	34	0.011015	14720000	18.7	150	83	84	0.011015	14720000	18.7
	111	35	36	0.011015	14720000	18.78	151	84	85	0.011015	14720000	18.7
	112	36	37	0.011015	14720000	18.78	152	85	86	0.011015	14720000	18.7
	113	37	38	0.011015	14720000	18.78	153	86	87	0.011015	14720000	18.7
	114	38	39	0.011015	14720000	18.78	154	87	88	0.011015	14720000	18.7
	115	39	40	0.011015	14720000	18.78	155	88	89	0.011015	14720000	18.7
	116	41	42	0.011015	14720000	19	156	90	91	0.011015	14720000	18.78
	117	42	43	0.011015	14720000	19	157	91	92	0.011015	14720000	18.78
	118	43	44	0.011015	14720000	19	158	92	93	0.011015	14720000	18.78
	119	44	45	0.011015	14720000	19	159	93	94	0.011015	14720000	18.78
	120	46	47	0.011015	14720000	19.52	160	94	95	0.011015	14720000	18.78
					11,20000	13.32	100	54	33	0.011010	11,20000	10.70
					11,2000	13.32	100	5 4	33	0.011013	11,2000	10.70
M	N	start	FND									
M	N	start	END	A	E	L	MN	start	END	A	E	L
M		start 96	END 97									
16				Α	E	L	MN	start	END	Α	E	L
16	51 52	96	97	A 0.011015	E 14720000 14720000	L 19	MN 201	start 145	END 146	A 0.011015 0.011015	E 14720000	L 18.78 18.78
16 16	51 52	96 97	97 98	A 0.011015 0.011015	E 14720000 14720000	L 19 19	MN 201 202	start 145 146	END 146 147	A 0.011015 0.011015	E 14720000 14720000	L 18.78 18.78
16 16 16	51 52 53	96 97 98	97 98 99	A 0.011015 0.011015 0.011015	E 14720000 14720000 14720000	L 19 19	MN 201 202 203	start 145 146 147	END 146 147 148	A 0.011015 0.011015 0.011015	E 14720000 14720000 14720000	L 18.78 18.78 18.78
16 16 16 16	51 52 53 54	96 97 98 99	97 98 99 100	A 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000	L 19 19 19	MN 201 202 203 204	start 145 146 147 148	146 147 148 149	A 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000	L 18.78 18.78 18.78 18.78
16 16 16 16 16	51 52 53 54 55	96 97 98 99 101	97 98 99 100 102	A 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000	L 19 19 19 19 19	MN 201 202 203 204 205	start 145 146 147 148 149	146 147 148 149 150	A 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000	L 18.78 18.78 18.78 18.78 18.78
16 16 16 16 16	51 52 53 54 55	96 97 98 99 101 102	97 98 99 100 102 103	A 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000	L 19 19 19 19 19 19 19.52	MN 201 202 203 204 205 206	start 145 146 147 148 149 151	146 147 148 149 150 152	A 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000	L 18.78 18.78 18.78 18.78 18.78
16 16 16 16 16 16	51 52 53 54 55 56	96 97 98 99 101 102 103	97 98 99 100 102 103 104	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 19 19 19 19 19 19.52 19.52	MN 201 202 203 204 205 206 207	start 145 146 147 148 149 151 152	146 147 148 149 150 152 153	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000	L 18.78 18.78 18.78 18.78 18.78 19
16 16 16 16 16 16 16 16	51 52 53 54 55 56 57	96 97 98 99 101 102 103 105	97 98 99 100 102 103 104 106	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 19 19 19 19 19 19.52 19.52 19.52	MN 201 202 203 204 205 206 207 208	start 145 146 147 148 149 151 152	146 147 148 149 150 152 153 154	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 18.78 18.78 18.78 18.78 19.19
16 16 16 16 16 16 16 16	51 52 53 54 55 56 57 58	96 97 98 99 101 102 103 105	97 98 99 100 102 103 104 106 107	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 19 19 19 19 19.52 19.52 19.52 20.7 20.7	MN 201 202 203 204 205 206 207 208 209	start 145 146 147 148 149 151 152 153 154	146 147 148 149 150 152 153 154 155	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 18.78 18.78 18.78 18.78 19 19
160 160 160 160 160 160 170 170	51 52 53 54 55 56 57 58 59	96 97 98 99 101 102 103 105 106	97 98 99 100 102 103 104 106 107 109	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 19 19 19 19 19.52 19.52 19.52 20.7 20.7 23.56	MN 201 202 203 204 205 206 207 208 209 210	start 145 146 147 148 149 151 152 153 154 156	146 147 148 149 150 152 153 154 155	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 18.78 18.78 18.78 18.78 19 19 19
16 16 16 16 16 16 16 16 17	51 52 53 54 55 56 57 58 59 70	96 97 98 99 101 102 103 105 106 108	97 98 99 100 102 103 104 106 107 109	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 19 19 19 19 19.52 19.52 19.52 20.7 20.7 23.56 18.74	MN 201 202 203 204 205 206 207 208 209 210 211	start 145 146 147 148 149 151 152 153 154 156 157	146 147 148 149 150 152 153 154 155 157	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 18.78 18.78 18.78 18.78 19 19 19 19 19.52 19.52
16 16 16 16 16 16 16 17 17	51 52 53 54 55 56 57 58 59 70 71	96 97 98 99 101 102 103 105 106 108 111	97 98 99 100 102 103 104 106 107 109 112	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 19 19 19 19 19.52 19.52 19.52 20.7 20.7 23.56 18.74 18.74	MN 201 202 203 204 205 206 207 208 209 210 211 212	start 145 146 147 148 149 151 152 153 154 156 157	146 147 148 149 150 152 153 154 155 157 158	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 18.78 18.78 18.78 18.78 19 19 19 19 19 19.52 19.52
16 16 16 16 16 16 16 17 17 17	51 52 53 54 55 56 57 58 59 70 71	96 97 98 99 101 102 103 105 106 108 111 112	97 98 99 100 102 103 104 106 107 109 112 113 114	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 19 19 19 19 19.52 19.52 19.52 20.7 20.7 23.56 18.74 18.74	MN 201 202 203 204 205 206 207 208 209 210 211 212 213	start 145 146 147 148 149 151 152 153 154 156 157 158 160	146 147 148 149 150 152 153 154 155 157 158 159 161	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 18.78 18.78 18.78 18.78 19 19 19 19 19 19.52 19.52 20.7
166 166 166 166 166 166 177 177 177 177	51 52 53 54 55 56 57 58 59 70 71 72 73	96 97 98 99 101 102 103 105 106 108 111 112 113	97 98 99 100 102 103 104 106 107 109 112 113 114	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 19 19 19 19 19.52 19.52 19.52 20.7 20.7 23.56 18.74 18.74 18.74	MN 201 202 203 204 205 206 207 208 209 210 211 212 213 214	start 145 146 147 148 149 151 152 153 154 156 157 158 160 161	146 147 148 149 150 152 153 154 155 157 158 159 161 162	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 18.78 18.78 18.78 18.78 19 19 19 19 19.52 19.52 19.52 20.7 20.7
16 16 16 16 16 16 16 17 17 17 17	51 52 53 54 55 56 57 58 59 70 71 72 73	96 97 98 99 101 102 103 105 106 108 111 112 113 114	97 98 99 100 102 103 104 106 107 109 112 113 114 115 116	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 19 19 19 19 19.52 19.52 19.52 20.7 20.7 23.56 18.74 18.74 18.74 18.74 18.74	MN 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215	start 145 146 147 148 149 151 152 153 154 156 157 158 160 161 163	146 147 148 149 150 152 153 154 155 157 158 159 161 162 164	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 18.78 18.78 18.78 18.78 19 19 19 19 19.52 19.52 19.52 20.7 20.7 23.56
160 160 160 160 160 170 170 170 170 170 170 170 170 170 17	51 52 53 54 55 56 57 58 59 70 71 72 73	96 97 98 99 101 102 103 105 106 108 111 112 113 114 115 116	97 98 99 100 102 103 104 106 107 109 112 113 114 115 116	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 19 19 19 19 19.52 19.52 19.52 20.7 20.7 23.56 18.74 18.74 18.74 18.74 18.74	MN 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216	start 145 146 147 148 149 151 152 153 154 156 157 158 160 161 163 166	146 147 148 149 150 152 153 154 155 157 158 159 161 162 164 167	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 18.78 18.78 18.78 18.78 19 19 19 19 19.52 19.52 19.52 20.7 20.7 23.56 18.74
160 160 160 160 160 170 170 170 170 170 170 170 170 170 17	51 52 53 54 55 56 57 58 59 70 71 72 73 74 75 76	96 97 98 99 101 102 103 105 106 108 111 112 113 114 115 116	97 98 99 100 102 103 104 106 107 109 112 113 114 115 116 117 118	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000	L 19 19 19 19 19.52 19.52 19.52 20.7 20.7 23.56 18.74 18.74 18.74 18.74 18.74 18.74	MN 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217	start 145 146 147 148 149 151 152 153 154 156 157 158 160 161 163 166 167	146 147 148 149 150 152 153 154 155 157 158 159 161 162 164 167 168	A 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015 0.011015	E 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000 14720000	L 18.78 18.78 18.78 18.78 19 19 19 19 19 19.52 19.52 19.52 20.7 20.7 23.56 18.74 18.74

171 0.011015 14720000 18.74

172 0.011015 14720000 18.74

0.011015 14720000

0.011015 14720000

18.7

18.7

182	123	124	0.011015	14720000	18.7	222	172	173	0.011015	14720000	18.74
183	124	125	0.011015	14720000	18.7	223	173	174	0.011015	14720000	18.74
184	125	126	0.011015	14720000	18.7	224	174	175	0.011015	14720000	18.74
185	126	127	0.011015	14720000	18.7	225	176	177	0.011015	14720000	18.7
186	127	128	0.011015	14720000	18.7	226	177	178	0.011015	14720000	18.7
187	128	129	0.011015	14720000	18.7	227	178	179	0.011015	14720000	18.7
188	130	131	0.011015	14720000	18.68	228	179	180	0.011015	14720000	18.7
189	131	132	0.011015	14720000	18.68	229	180	181	0.011015	14720000	18.7
190	132	133	0.011015	14720000	18.68	230	181	182	0.011015	14720000	18.7
191	133	134	0.011015	14720000	18.68	231	182	183	0.011015	14720000	18.7
192	134	135	0.011015	14720000	18.68	232	183	184	0.011015	14720000	18.7
193	135	136	0.011015	14720000	18.68	233	185	186	0.011015	14720000	18.68
194	136	137	0.011015	14720000	18.68	234	186	187	0.011015	14720000	18.68
195	138	139	0.011015	14720000	18.7	235	187	188	0.011015	14720000	18.68
196	139	140	0.011015	14720000	18.7	236	188	189	0.011015	14720000	18.68
197	140	141	0.011015	14720000	18.7	237	189	190	0.011015	14720000	18.68
198	141	142	0.011015	14720000	18.7	238	190	191	0.011015	14720000	18.68
199	142	143	0.011015	14720000	18.7	239	191	192	0.011015	14720000	18.68
200	143	144	0.011015	14720000	18.7	240	193	194	0.011015	14720000	18.7

MN	start	END	Α	E	L	MN	start	END	Α	E	L
241	194	195	0.011015	14720000	18.7	281	242	243	8.75	3000000	10.33
242	195	196	0.011015	14720000	18.7	282	243	244	8.75	3000000	10.33
243	196	197	0.011015	14720000	18.7	283	244	245	8.75	3000000	10.33
244	197	198	0.011015	14720000	18.7	284	245	306	8.75	3000000	10.33
245	198	199	0.011015	14720000	18.7	285	240	246	8.75	3000000	10.33
246	200	201	0.011015	14720000	18.78	286	246	247	8.75	3000000	10.33
247	201	202	0.011015	14720000	18.78	287	247	248	8.75	3000000	10.33
248	202	203	0.011015	14720000	18.78	288	248	249	8.75	3000000	10.33
249	203	204	0.011015	14720000	18.78	289	249	250	8.75	3000000	10.33
250	204	205	0.011015	14720000	18.78	290	250	307	8.75	3000000	10.33
251	206	207	0.011015	14720000	19	291	306	251	15.38	3000000	10
252	207	208	0.011015	14720000	19	292	251	252	15.38	3000000	10
253	208	209	0.011015	14720000	19	293	252	253	15.38	3000000	10
254	209	210	0.011015	14720000	19	294	253	310	15.38	3000000	10
255	211	212	0.011015	14720000	19.52	295	307	254	15.38	3000000	10
256	212	213	0.011015	14720000	19.52	296	254	255	15.38	3000000	10
257	213	214	0.011015	14720000	19.52	297	255	256	15.38	3000000	10
258	215	216	0.011015	14720000	20.7	298	256	311	15.38	3000000	10
259	216	217	0.011015	14720000	20.7	299	257	258	1.325	21000000	20
260	218	219	0.011015	14720000	23.56	300	258	259	1.325	21000000	20
261	221	222	8.75	3000000	2	301	259	260	1.325	21000000	20
262	222	223	8.75	3000000	2	302	260	261	1.325	21000000	20
263	223	224	8.75	3000000	2	303	261	262	1.325	21000000	20
264	224	225	8.75	3000000	2	304	262	263	1.325	21000000	20
265	225	226	8.75	3000000	2	305	263	264	1.325	21000000	20

266	226	227	8.75	3000000	2	306	264	265	1.325	21000000	20
267	227	228	8.75	3000000	2	307	265	266	1.325	21000000	20
268	228	229	8.75	3000000	2	308	267	268	1.325	21000000	20
269	229	230	8.75	3000000	2	309	268	269	1.325	21000000	20
270	231	232	8.75	3000000	2	310	269	270	1.325	21000000	20
271	232	233	8.75	3000000	2	311	270	271	1.325	21000000	20
272	233	234	8.75	3000000	2	312	271	272	1.325	21000000	20
273	234	235	8.75	3000000	2	313	272	273	1.325	21000000	20
274	235	236	8.75	3000000	2	314	273	274	1.325	21000000	20
275	236	237	8.75	3000000	2	315	274	275	1.325	21000000	20
276	237	238	8.75	3000000	2	316	275	276	1.325	21000000	20
277	238	239	8.75	3000000	2	317	277	278	1.325	21000000	20
278	239	240	8.75	3000000	2	318	278	279	1.325	21000000	20
279	230	241	8.75	3000000	10.33	319	279	280	1.325	21000000	20
280	241	242	8.75	3000000	10.33	320	280	281	1.325	21000000	20

MN	start	END	Α	E	L
321	281	282	1.325	21000000	20
322	282	283	1.325	21000000	20
323	283	284	1.325	21000000	20
324	284	285	1.325	21000000	20
325	285	286	1.325	21000000	20
326	287	288	1.325	21000000	20
327	288	289	1.325	21000000	20
328	289	290	1.325	21000000	20
329	290	291	1.325	21000000	20
330	291	292	1.325	21000000	20
331	292	293	1.325	21000000	20
332	293	294	1.325	21000000	20
333	294	295	1.325	21000000	20
334	295	296	1.325	21000000	20
335	297	308	1.325	21000000	5
336	297	257	1.325	21000000	5
337	266	298	1.325	21000000	5
338	298	306	1.325	21000000	5
339	306	299	1.325	21000000	5
340	299	276	1.325	21000000	5
341	267	300	1.325	21000000	5
342	300	301	1.325	21000000	5
343	301	302	1.325	21000000	5
344	302	277	1.325	21000000	5
345	286	303	1.325	21000000	5
346	303	307	1.325	21000000	5
347	307	304	1.325	21000000	5
348	304	296	1.325	21000000	5
349	287	305	1.325	21000000	5
350	305	309	1.325	21000000	5

Перемещение узлов на пилоне

R- Евклидова норма для конечной итерации

	ltoration						Itaration	
	Iteration no=1			Iteration no=2			Iteration no=3	
	R=0.00975			R=0.0099			R=0.00999	
Nrjp	Xd -m	Zd-m	Nrjp	Xd-m	Zd-m	Nrjp	Xd-m	Zd-m
)	716		,	710		۵۲.۰۰	7.0	
221	0.099	-0.00118	221	0.01386	-0.00116	221	0.00366	-0.000731
222	0.0959	-0.00118	222	0.01365	-0.00116	222	0.00366	-0.000731
223	0.0928	-0.00118	223	0.01344	-0.00116	223	0.00366	-0.000731
224	0.0896	-0.00117	224	0.0133	-0.00116	224	0.00365	-0.000731
225	0.0865	-0.00116	225	0.01309	-0.00115	225	0.00365	-0.000725
226	0.0834	-0.00115	226	0.01288	-0.00114	226	0.00363	-0.000718
227	0.0803	-0.00114	227	0.01274	-0.00113	227	0.00363	-0.000712
228	0.0772	-0.00113	228	0.01253	-0.00112	228	0.00363	-0.000706
229	0.0742	-0.00111	229	0.01232	-0.0011	229	0.00363	-0.000693
230	0.0712	-0.0011	230	0.01211	-0.00109	230	0.00363	-0.000687
231	-0.099	-0.00118	231	-0.01386	-0.00116	231	-0.00366	-0.000731
232	-0.096	-0.00118	232	-0.01365	-0.00116	232	-0.00366	-0.000731
233	-0.093	-0.00118	233	-0.01344	-0.00116	233	-0.00366	-0.000731
234	-0.09	-0.00117	234	-0.0133	-0.00116	234	-0.00365	-0.000731
235	-0.087	-0.00116	235	-0.01309	-0.00115	235	-0.00365	-0.000725
236	-0.083	-0.00115	236	-0.01288	-0.00114	236	-0.00363	-0.000718
237	-0.08	-0.00114	237	-0.01274	-0.00113	237	-0.00363	-0.000712
238	-0.077	-0.00113	238	-0.01253	-0.00112	238	-0.00363	-0.000706
239	-0.074	-0.00111	239	-0.01232	-0.0011	239	-0.00363	-0.000693
240	-0.071	-0.0011	240	-0.01211	-0.00109	240	-0.00363	-0.000687
241	0.0563	-0.001	241	0.01092	-0.0099	241	0.00351	-0.006237
242	0.0427	-0.009	242	0.00966	-0.0089	242	0.0033	-0.005607
243	0.0306	-0.0078	243	0.00833	-0.0078	243	0.00303	-0.004914
244	0.0204	-0.0066	244	0.00686	-0.0066	244	0.00264	-0.004158
245	0.0121	-0.0053	245	0.00539	-0.0053	245	0.00219	-0.003339
246	-0.056	-0.01	246	-0.01092	-0.0099	246	-0.00351	-0.006237
247	-0.043	-0.009	247	-0.00966	-0.0089	247	-0.0033	-0.005607
248	-0.031	-0.0078	248	-0.00833	-0.0078	248	-0.00303	-0.004914
249	-0.02	-0.0066	249	-0.00686	-0.0066	249	-0.00264	-0.004158
250	-0.012	-0.0053	250	-0.00539	-0.0053	250	-0.00219	-0.003339
251	0.0036	-0.003	251	0.0026	-0.003	251	0.0015	-0.00189
252	0.0018	0.0021	252	0.0008	0.0011	252	0.0006	0.000693
253	0.0005	0.0011	253	0.0001	0.001	253	0.0004	0.00063
254	-0.004	0.003	254	-0.0026	0.002	254	-0.0015	0.00126
255	-0.002	-0.0021	255	-0.0008	-0.0019	255	-0.0006	-0.001197
256	-5E-04	-0.0011	256	-0.0001	-0.001	256	-0.0004	-0.00063

Перемещение узлов центрального пролета балки жесткости

R - Евклидова норма для конечной итерации
Desired value- D.v: Yes: оптимизационная
(желаемая величина) No: не оптимизационная

	Iteratio	n no=1		Iteration no=2					Iteration no=3			
	R=0.0	0977			R=0.	0099			R=0	.00999		
Nrjd	Zd-m	Max	Des	Nrjd	Zd-m	Max	Des	Nrjd	Zd-m	Max	D.v	
		eta	value			eta	value			eta		
267	-0.4363	0.0011	No	267	-0.042	0.000107	No	267	-0.0084	0.00002125	Yes	
268	-0.4132	0.0011	No	268	-0.0377	0.000107	No	268	-0.0075	0.00002125	Yes	
269	-0.3709	0.0011	No	269	-0.0308	0.000107	No	269	-0.0062	0.00002125	Yes	
270	-0.3149	0.0011	No	270	-0.023	0.000107	No	270	-0.0046	0.00002125	Yes	
271	-0.2518	0.0011	No	271	-0.0159	0.000107	No	271	-0.0032	0.00002125	Yes	
272	-0.188	0.0011	No	272	-0.0108	0.000107	No	272	-0.0022	0.00002125	Yes	
273	-0.1288	0.0011	No	273	-0.0081	0.000107	No	273	-0.0016	0.00002125	Yes	
274	-0.0779	0.0011	No	274	-0.0073	0.000107	No	274	-0.0015	0.00002125	Yes	
275	-0.0378	0.0011	No	275	-0.0071	0.000107	No	275	-0.0014	0.00002125	Yes	
276	-0.0109	0.0011	No	276	-0.0056	0.000107	No	276	-0.0011	0.00002125	Yes	
277	-0.4363	0.0011	No	277	-0.042	0.000107	No	277	-0.0084	0.00002125	Yes	
278	-0.4132	0.0011	No	278	-0.0377	0.000107	No	278	-0.0075	0.00002125	Yes	
279	-0.3709	0.0011	No	279	-0.0308	0.000107	No	279	-0.0062	0.00002125	Yes	
280	-0.3149	0.0011	No	280	-0.023	0.000107	No	280	-0.0046	0.00002125	Yes	
281	-0.2518	0.0011	No	281	-0.0159	0.000107	No	281	-0.0032	0.00002125	Yes	
282	-0.188	0.0011	No	282	-0.0108	0.000107	No	282	-0.0022	0.00002125	Yes	
283	-0.1288	0.0011	No	283	-0.0081	0.000107	No	283	-0.0016	0.00002125	Yes	
284	-0.0779	0.0011	No	284	-0.0073	0.000107	No	284	-0.0015	0.00002125	Yes	
285	-0.0377	0.0011	No	285	-0.0071	0.000107	No	285	-0.0014	0.00002125	Yes	
286	-0.0109	0.0011	No	286	-0.0056	0.000107	No	286	-0.0011	0.00002125	Yes	
299	-0.0068	0.0011	No	299	-0.0048	0.000107	No	299	-0.001	0.00002125	Yes	
300	-0.4386	0.0011	No	300	-0.0425	0.000107	No	300	-0.0085	0.00002125	Yes	
301	-0.4394	0.0011	No	301	-0.0426	0.000107	No	301	-0.0085	0.00002125	Yes	
302	-0.4386	0.0011	No	302	-0.0425	0.000107	No	302	-0.0085	0.00002125	Yes	
303	-0.0068	0.0011	No	303	-0.0048	0.000107	No	303	-0.0096	0.00002125	Yes	

Оптимизация силы натяжения вант при выполнении процедуры алгоритма

Исходная длина вант- input. L;

Окончательная длина вант -Final. L

Ті. предварительное натяжение вант (тон)

Т. окончательное натяжение вант(тон)

	Iteration						Iteration						
		no=1				no=2							
	R=0.00977							R=	0.0099				
MN Init.L Finl.L Input Output D.v						MN	Init.L	Finl.L	Input Ti	Output T	D.v		

Ti T

1	18.7414	18.7544	87.2	200.25	No	1	18.74	18.7459	200.25	238.97	No
2	18.7414	18.7543	87.2	198.88	No	2	18.74	18.7453	200.25	234.38	No
3	18.704	18.7165	87.2	195.15	No	3	18.7	18.7076	195.15	226.22	No
4	18.704	18.717	87.2	200.11	No	4	18.7	18.7073	195.15	223.9	No
5	18.6839	18.6957	87.2	189.58	No	5	18.68	18.6865	189.58	212.44	No
6	18.6839	18.6968	87.2	198.95	No	6	18.68	18.6865	189.58	212	No
7	18.6983	18.7093	87.2	182.71	No	7	18.7	18.6999	182.71	197	No
8	18.6983	18.7106	87.2	194.05	No	8	18.7	18.7	182.71	197.96	No
9	18.7812	18.7913	87.2	173.86	No	9	18.78	18.7819	173.86	179.56	No
10	18.7812	18.7925	87.2	184.23	No	10	18.78	18.7821	173.86	181.43	No
11	19.0029	19.0118	87.2	162.55	No	11	19	19.0027	162.55	160.18	No
12	19.0029	19.0125	87.2	168.5	No	12	19	19.0029	162.55	162.49	No
13	19.5182	19.5256	87.2	148.53	No	13	19.52	19.5171	148.53	139.31	No
14	19.5182	19.5253	87.2	145.99	No	14	19.52	19.5174	148.53	141.63	No
15	20.7002	20.7059	87.2	131.64	No	15	20.7	20.6985	131.64	117.64	No
16	20.7002	20.704	87.2	116.56	No	16	20.7	20.6987	131.64	119.71	No
17	23.5608	23.5643	87.2	111.27	No	17	23.56	23.5584	111.27	94.96	No
18	23.5608	23.5603	87.2	83.53	No	18	23.56	23.5587	111.27	96.57	No
19	31.4006	31.4003	87.2	85.27	No	19	31.4	31.3973	85.27	67.99	No
20	31.4006	31.3959	87.2	62.92	No	20	31.4	31.3974	85.27	68.74	No
21	18.7414	18.7543	87.2	198.88	No	21	18.74	18.7453	200.25	234.38	No
22	18.7414	18.7544	87.2	200.25	No	22	18.74	18.7459	200.25	238.97	No
23	18.704	18.7171	87.2	200.09	No	23	18.7	18.7073	195.15	223.9	No
24	18.704	18.7165	87.2	195.15	No	24	18.7	18.7076	195.15	226.22	No
25	18.6839	18.6967	87.2	198.94	No	25	18.68	18.6865	189.58	212	No
26	18.6839	18.6957	87.2	189.57	No	26	18.68	18.6865	189.58	212.44	No
27	18.6983	18.7105	87.2	194.05	No	27	18.7	18.7	182.71	197.96	No
28	18.6983	18.7093	87.2	182.71	No	28	18.7	18.6999	182.71	197	No
29	18.7812	18.7924	87.2	184.21	No	29	18.78	18.7821	173.86	181.43	No
30	18.7812	18.7913	87.2	173.86	No	30	18.78	18.7819	173.86	179.56	No
31	19.0029	19.0124	87.2	168.49	No	31	19	19.0029	162.55	162.48	No
32	19.0029	19.0118	87.2	162.56	No	32	19	19.0027	162.55	160.18	No
33	19.5182	19.5252	87.2	145.96	No	33	19.52	19.5174	148.53	141.64	No
34	19.5182	19.5256	87.2	148.54	No	34	19.52	19.5171	148.53	139.31	No
35	20.7002	20.704	87.2	116.54	No	35	20.7	20.6987	131.64	119.71	No
36	20.7002	20.7059	87.2	131.65	No	36	20.7	20.6985	131.64	117.64	No
37	23.5608	23.5602	87.2	83.51	No	37	23.56	23.5587	111.27	96.57	No
38	23.5608	23.5643	87.2	111.28	No	38	23.56	23.5584	111.27	94.96	No
39	31.4006	31.3959	87.2	62.91	No	39	31.4	31.3974	85.27	68.74	No
40	31.4006	31.4003	87.2	85.27	No	40	31.4	31.3973	85.27	67.99	No
41	18.7414	18.7537	87.2	193.78	No	41	18.74	18.7451	200.25	232.5	No
42	18.704	18.7157	87.2	188.91	No	42	18.7	18.7069	195.15	219.99	No
43	18.6838	18.695	87.2	183.57	No	43	18.68	18.6858	189.58	206.44	No
44	18.6983	18.7086	87.2	176.96	No	44	18.7	18.6992	182.71	191.24	No
45	18.7812	18.7906	87.2	168.38	No	45	18.78	18.7813	173.86	174.07	No
46	19.0029	19.0111	87.2	157.37	No	46	19	19.002	162.55	154.98	No
							_5	- · · · · ·		2	•

47	19.5182	19.525	87.2	143.69	No	47	19.52	19.5165	148.53	134.47	No
48	20.7002	20.7053	87.2	127.24	No	48	20.7	20.6979	131.64	113.24	No
49	23.5608	23.5637	87.2	107.48	No	49	23.56	23.5579	111.27	91.16	No
50	31.4006	31.3997	87.2	82.51	No	50	31.4	31.3968	85.27	65.23	No
51	18.7414	18.7535	87.2	192.39	No	51	18.74	18.7446	200.25	227.91	No
52	18.704	18.7163	87.2	193.83	No	52	18.7	18.7066	195.15	217.66	No
53	18.6839	18.696	87.2	192.91	No	53	18.68	18.6858	189.58	205.98	No
54	18.6983	18.7099	87.2	188.27	No	54	18.7	18.6993	182.71	192.2	No
55	18.7812	18.7919	87.2	178.71	No	55	18.78	18.7815	173.86	175.94	No
56	19.0029	19.0118	87.2	163.31	No	56	19	19.0023	162.55	157.29	No
57	19.5182	19.5247	87.2	141.13	No	57	19.52	19.5168	148.53	136.79	No
58	20.7002	20.7034	87.2	112.15	No	58	20.7	20.6982	131.64	115.31	No
59	23.5608	23.5597	87.2	79.73	No	59	23.56	23.5581	111.27	92.77	No
60	31.4006	31.3954	87.2	60.15	No	60	31.4	31.3969	85.27	65.98	No
61	18.7414	18.7535	87.2	192.39	No	61	18.74	18.7446	200.25	227.91	No
62	18.704	18.7163	87.2	193.85	No	62	18.7	18.7066	195.15	217.66	No
63	18.6839	18.696	87.2	192.91	No	63	18.68	18.6858	189.58	205.98	No
64	18.6983	18.7099	87.2	188.26	No	64	18.7	18.6993	182.71	192.2	No
65	18.7812	18.7918	87.2	178.72	No	65	18.78	18.7815	173.86	175.94	No
66	19.0029	19.0119	87.2	163.3	No	66	19	19.0023	162.55	157.29	No
67	19.5182	19.5247	87.2	141.12	No	67	19.52	19.5168	148.53	136.79	No
68	20.7002	20.7034	87.2	112.13	No	68	20.7	20.6981	131.64	115.31	No
69	23.5608	23.5597	87.2	79.71	No	69	23.56	23.5581	111.27	92.77	No
70	31.4006	31.3954	87.2	60.15	No	70	31.4	31.3969	85.27	65.98	No
71	18.7414	18.7536	87.2	193.78	No	71	18.74	18.7451	200.25	232.5	No
72	18.704	18.7158	87.2	188.91	No	72	18.7	18.7069	195.15	219.98	No
73	18.6839	18.695	87.2	183.56	No	73	18.68	18.6858	189.58	206.43	No
74	18.6983	18.7086	87.2	176.94	No	74	18.7	18.6992	182.71	191.24	No
75	18.7812	18.7907	87.2	168.38	No	75	18.78	18.7812	173.86	174.07	No
76	19.0029	19.0112	87.2	157.36	No	76	19	19.0021	162.55	154.99	No
77	19.5182	19.525	87.2	143.7	No	77	19.52	19.5165	148.53	134.47	No
78	20.7002	20.7054	87.2	127.25	No	78	20.7	20.6979	131.64	113.23	No
79	23.5608	23.5637	87.2	107.48	No	79	23.56	23.5579	111.27	91.17	No
80	31.4006	31.3997	87.2	82.51	No	80	31.4	31.3968	85.27	65.23	No
81	18.7415	18.7544	87.2	199.55	No	81	18.74	18.7459	200.25	238.28	No
82	18.7414	18.7543	87.2	198.87	No	82	18.74	18.7457	200.25	237.6	No
83	18.7414	18.7542	87.2	198.19	No	83	18.74	18.7456	200.25	236.92	No
84	18.7414	18.7541	87.2	197.53	No	84	18.74	18.7455	200.25	236.26	No
85	18.7414	18.7541	87.2	196.87	No	85	18.74	18.7455	200.25	235.61	No
86	18.7414	18.754	87.2	196.23	No	86	18.74	18.7454	200.25	234.97	No
87	18.7414	18.7539	87.2	195.6	No	87	18.74	18.7453	200.25	234.34	No
88	18.7414	18.7538	87.2	194.98	No	88	18.74	18.7452	200.25	233.71	No
89	18.7414	18.7538	87.2	194.37	No	89	18.74	18.7452	200.25	233.1	No
90	18.704	18.7164	87.2	194.41	No	90	18.7	18.7075	195.15	225.48	No
91	18.704	18.7163	87.2	193.69	No	91	18.7	18.7074	195.15	224.76	No
92	18.704	18.7162	87.2	192.97	No	92	18.7	18.7073	195.15	224.05	No
93	18.704	18.7161	87.2	192.26	No	93	18.7	18.7073	195.15	223.34	No
94	18.704	18.7161	87.2	191.57	No	94	18.7	18.7072	195.15	222.65	No
											

95	18.704	18.716	87.2	190.88	No	95	18.7	18.7071	195.15	221.97	No
96	18.704	18.7159	87.2	190.22	No	96	18.7	18.707	195.15	221.3	No
97	18.704	18.7158	87.2	189.56	No	97	18.7	18.7069	195.15	220.64	No
98	18.6838	18.6955	87.2	188.78	No	98	18.68	18.6863	189.58	211.65	No
99	18.6839	18.6955	87.2	188	No	99	18.68	18.6863	189.58	210.88	No
100	18.6839	18.6954	87.2	187.24	No	100	18.68	18.6862	189.58	210.11	No
101	18.6838	18.6952	87.2	186.46	No	101	18.68	18.6861	189.58	209.35	No
102	18.6839	18.6952	87.2	185.74	No	102	18.68	18.6861	189.58	208.61	No
103	18.6838	18.6951	87.2	185	No	103	18.68	18.686	189.58	207.87	No
104	18.6839	18.6951	87.2	184.28	No	104	18.68	18.6859	189.58	207.15	No
105	18.6983	18.7092	87.2	181.86	No	105	18.7	18.6998	182.71	196.15	No
106	18.6983	18.7091	87.2	181.01	No	106	18.7	18.6997	182.71	195.3	No
107	18.6983	18.709	87.2	180.18	No	107	18.7	18.6996	182.71	194.47	No
108	18.6983	18.7089	87.2	179.35	No	108	18.7	18.6995	182.71	193.65	No
109	18.6983	18.7088	87.2	178.55	No	109	18.7	18.6994	182.71	192.83	No
110	18.6983	18.7087	87.2	177.74	No	110	18.7	18.6993	182.71	192.03	No
111	18.7813	18.7912	87.2	172.92	No	111	18.78	18.7818	173.86	178.62	No
112	18.7812	18.7911	87.2	171.99	No	112	18.78	18.7817	173.86	177.69	No
113	18.7812	18.7909	87.2	171.07	No	113	18.78	18.7815	173.86	176.77	No
114	18.7812	18.7909	87.2	170.16	No	114	18.78	18.7815	173.86	175.85	No
115	18.7812	18.7907	87.2	169.27	No	115	18.78	18.7814	173.86	174.95	No
116	19.0029	19.0116	87.2	161.49	No	116	19	19.0025	162.55	159.12	No
117	19.0029	19.0115	87.2	160.44	No	117	19	19.0024	162.55	158.07	No
118	19.0029	19.0114	87.2	159.41	No	118	19	19.0023	162.55	157.03	No
119	19.0029	19.0113	87.2	158.38	No	119	19	19.0022	162.55	156	No
120	19.5182	19.5254	87.2	147.31	No	120	19.52	19.5169	148.53	138.08	No
121	19.5182	19.5253	87.2	146.09	No	121	19.52	19.5168	148.53	136.87	No
122	19.5182	19.5251	87.2	144.89	No	122	19.52	19.5166	148.53	135.66	No
123	20.7002	20.7057	87.2	130.17	No	123	20.7	20.6983	131.64	116.16	No
124	20.7002	20.7055	87.2	128.7	No	124	20.7	20.6981	131.64	114.69	No
125	23.5608	23.564	87.2	109.37	No	125	23.56	23.5582	111.27	93.06	No
126	18.7415	18.7543	87.2	198.18	No	126	18.74	18.7453	200.25	233.69	No
127	18.7414	18.7541	87.2	197.5	No	127	18.74	18.7451	200.25	233	No
128	18.7414	18.754	87.2	196.82	No	128	18.74	18.7451	200.25	232.33	No
129	18.7413	18.7539	87.2	196.15	No	129	18.74	18.745	200.25	231.67	No
130	18.7415	18.754	87.2	195.48	No	130	18.74	18.745	200.25	231.01	No
131	18.7413	18.7538	87.2	194.85	No	131	18.74	18.7448	200.25	230.37	No
132	18.7414	18.7537	87.2	194.19	No	132	18.74	18.7448	200.25	229.74	No
133	18.7415	18.7537	87.2	193.59	No	133	18.74	18.7448	200.25	229.12	No
134	18.7414	18.7536	87.2	192.97	No	134	18.74	18.7446	200.25	228.51	No
135	18.704	18.7169	87.2	199.36	No	135	18.7	18.7072	195.15	223.17	No
136	18.704	18.7169	87.2	198.63	No	136	18.7	18.7072	195.15	222.44	No
137	18.704	18.7168	87.2	197.92	No	137	18.7	18.7071	195.15	221.73	No
138	18.704	18.7167	87.2	197.2	No	138	18.7	18.707	195.15	221.02	No
139	18.704	18.7166	87.2	196.52	No	139	18.7	18.7069	195.15	220.33	No
140	18.704	18.7166	87.2	195.82	No	140	18.7	18.7068	195.15	219.65	No
141	18.704	18.7165	87.2	195.15	No	141	18.7	18.7068	195.15	218.97	No
142	18.704	18.7164	87.2	194.47	No	142	18.7	18.7067	195.15	218.31	No

143	18.6838	18.6966	87.2	198.15	No	143	18.68	18.6863	189.58	211.21	No
144	18.6839	18.6966	87.2	197.38	No	144	18.68	18.6863	189.58	210.43	No
145	18.6839	18.6965	87.2	196.6	No	145	18.68	18.6862	189.58	209.67	No
146	18.6838	18.6963	87.2	195.84	No	146	18.68	18.6861	189.58	208.91	No
147	18.6839	18.6963	87.2	195.08	No	147	18.68	18.686	189.58	208.16	No
148	18.6839	18.6962	87.2	194.35	No	148	18.68	18.6859	189.58	207.42	No
149	18.6838	18.6961	87.2	193.61	No	149	18.68	18.6858	189.58	206.7	No
150	18.6983	18.7105	87.2	193.19	No	150	18.7	18.6999	182.71	197.1	No
151	18.6983	18.7104	87.2	192.35	No	151	18.7	18.6998	182.71	196.26	No
152	18.6983	18.7103	87.2	191.5	No	152	18.7	18.6997	182.71	195.43	No
153	18.6983	18.7102	87.2	190.68	No	153	18.7	18.6996	182.71	194.6	No
154	18.6983	18.7101	87.2	189.86	No	154	18.7	18.6995	182.71	193.79	No
155	18.6983	18.71	87.2	189.06	No	155	18.7	18.6995	182.71	192.99	No
156	18.7813	18.7924	87.2	183.28	No	156	18.78	18.782	173.86	180.49	No
157	18.7812	18.7923	87.2	182.35	No	157	18.78	18.7819	173.86	179.56	No
158	18.7812	18.7921	87.2	181.42	No	158	18.78	18.7817	173.86	178.63	No
159	18.7813	18.792	87.2	180.51	No	159	18.78	18.7817	173.86	177.72	No
160	18.7812	18.7919	87.2	179.61	No	160	18.78	18.7816	173.86	176.82	No
161	19.0029	19.0123	87.2	167.45	No	161	19	19.0028	162.55	161.42	No
162	19.0029	19.0122	87.2	166.39	No	162	19	19.0027	162.55	160.37	No
163	19.0029	19.0121	87.2	165.36	No	163	19	19.0025	162.55	159.33	No
164	19.0029	19.012	87.2	164.33	No	164	19	19.0024	162.55	158.3	No
165	19.5182	19.5251	87.2	144.76	No	165	19.52	19.5172	148.53	140.41	No
166	19.5182	19.525	87.2	143.53	No	166	19.52	19.5171	148.53	139.19	No
167	19.5182	19.5248	87.2	142.33	No	167	19.52	19.5169	148.53	137.98	No
168	20.7002	20.7038	87.2	115.09	No	168	20.7	20.6985	131.64	118.23	No
169	20.7002	20.7036	87.2	113.61	No	169	20.7	20.6983	131.64	116.76	No
170	23.5608	23.56	87.2	81.62	No	170	23.56	23.5584	111.27	94.67	No
171	18.7414	18.7543	87.2	198.19	No	171	18.74	18.7453	200.25	233.68	No
172	18.7414	18.7541	87.2	197.48	No	172	18.74	18.7451	200.25	233.01	No
173	18.7414	18.754	87.2	196.82	No	173	18.74	18.7451	200.25	232.33	No
174	18.7414	18.754	87.2	196.14	No	174	18.74	18.745	200.25	231.67	No
175	18.7415	18.754	87.2	195.48	No	175	18.74	18.745	200.25	231.02	No
176	18.7413	18.7538	87.2	194.85	No	176	18.74	18.7448	200.25	230.37	No
177	18.7414	18.7537	87.2	194.21	No	177	18.74	18.7448	200.25	229.74	No
178	18.7415	18.7537	87.2	193.59	No	178	18.74	18.7448	200.25	229.12	No
179	18.7414	18.7536	87.2	192.99	No	179	18.74	18.7446	200.25	228.51	No
180	18.704	18.7169	87.2	199.35	No	180	18.7	18.7072	195.15	223.17	No
181	18.704	18.7168	87.2	198.62	No	181	18.7	18.7072	195.15	222.44	No
182	18.704	18.7168	87.2	197.9	No	182	18.7	18.7071	195.15	221.73	No
183	18.704	18.7167	87.2	197.21	No	183	18.7	18.707	195.15	221.02	No
184	18.704	18.7166	87.2	196.51	No	184	18.7	18.7069	195.15	220.33	No
185	18.704	18.7165	87.2	195.82	No	185	18.7	18.7068	195.15	219.65	No
186	18.704	18.7165	87.2	195.16	No	186	18.7	18.7068	195.15	218.97	No
187	18.704	18.7164	87.2	194.49	No	187	18.7	18.7067	195.15	218.31	No
188	18.6838	18.6966	87.2	198.15	No	188	18.68	18.6863	189.58	211.21	No
189	18.6839	18.6966	87.2	197.36	No	189	18.68	18.6863	189.58	210.43	No
190	18.6839	18.6965	87.2	196.6	No	190	18.68	18.6862	189.58	209.67	No

191	18.6838	18.6963	87.2	195.83	No	191	18.68	18.686	189.58	208.9	No
192	18.6839	18.6963	87.2	195.09	No	192	18.68	18.686	189.58	208.16	No
193	18.6839	18.6962	87.2	194.35	No	193	18.68	18.6859	189.58	207.42	No
194	18.6838	18.6961	87.2	193.63	No	194	18.68	18.6858	189.58	206.7	No
195	18.6983	18.7105	87.2	193.19	No	195	18.7	18.6999	182.71	197.11	No
196	18.6983	18.7104	87.2	192.34	No	196	18.7	18.6998	182.71	196.26	No
197	18.6983	18.7103	87.2	191.5	No	197	18.7	18.6998	182.71	195.43	No
198	18.6983	18.7102	87.2	190.68	No	198	18.7	18.6996	182.71	194.6	No
199	18.6983	18.7101	87.2	189.86	No	199	18.7	18.6995	182.71	193.79	No
200	18.6983	18.71	87.2	189.05	No	200	18.7	18.6995	182.71	192.99	No
201	18.7812	18.7924	87.2	183.26	No	201	18.78	18.782	173.86	180.49	No
202	18.7812	18.7922	87.2	182.34	No	202	18.78	18.7819	173.86	179.55	No
203	18.7812	18.7921	87.2	181.41	No	203	18.78	18.7817	173.86	178.64	No
204	18.7812	18.7921	87.2	180.51	No	204	18.78	18.7817	173.86	177.72	No
205	18.7812	18.7919	87.2	179.6	No	205	18.78	18.7816	173.86	176.83	No
206	19.0029	19.0123	87.2	167.43	No	206	19	19.0028	162.55	161.42	No
207	19.0029	19.0122	87.2	166.38	No	207	19	19.0026	162.55	160.37	No
208	19.0029	19.0121	87.2	165.34	No	208	19	19.0026	162.55	159.33	No
209	19.0029	19.0119	87.2	164.32	No	209	19	19.0024	162.55	158.31	No
210	19.5182	19.5251	87.2	144.74	No	210	19.52	19.5172	148.53	140.41	No
211	19.5182	19.525	87.2	143.52	No	210	19.52	19.5171	148.53	139.19	No
212	19.5182	19.5248	87.2	142.31	No	212	19.52	19.5169	148.53	137.99	No
213	20.7002	20.7038	87.2	115.06	No	213	20.7	20.6985	131.64	118.23	No
214	20.7002	20.7036	87.2	113.59	No	213	20.7	20.6984	131.64	116.23	No
215	23.5608	23.56	87.2	81.61	No	214	23.56	23.5584	111.27	94.67	No
216	18.7414	18.7544	87.2	199.55	No	216	18.74	18.7458	200.25	238.28	No
217	18.7414	18.7542	87.2	198.87	No	217	18.74	18.7457	200.25	237.6	No
218	18.7414	18.7542	87.2	198.19	No	217	18.74	18.7456	200.25	236.93	No
219	18.7414	18.7541	87.2	197.53	No	219	18.74	18.7455	200.25	236.26	No
220	18.7415	18.7542	87.2	196.87	No	219		18.7456		235.61	No
221	18.7414	18.7539	87.2	196.22	No	221	18.74	18.7454	200.25 200.25	234.96	
222	18.7414	18.7539	87.2	195.59	No	222	18.74	18.7453	200.25	234.34	No No
223	18.7414	18.7538	87.2	194.97	No	223	18.74	18.7452	200.25	233.72	No
224	18.7414	18.7538	87.2	194.38	No	223	18.74	18.7452			
225	18.704	18.7163	87.2	194.41	No	225	18.7		200.25	233.11 225.49	No
226	18.704	18.7163	87.2	193.68	No	225	18.7	18.7075	195.15		No
227	18.704	18.7163	87.2	192.96	No	227	18.7	18.7075	195.15	224.76	No
228	18.704	18.7161	87.2	192.26	No	228	18.7	18.7073	195.15 195.15	224.05	No
229	18.704	18.7161	87.2	191.56	No			18.7073		223.34	No
230	18.704	18.716	87.2	190.89	No	229	18.7	18.7072	195.15	222.65	No
231	18.704	18.7159	87.2	190.83	No	230	18.7	18.7071	195.15	221.97	No
232	18.704	18.7158	87.2	189.56		231	18.7	18.707	195.15	221.3	No
232	18.6838	18.6955	87.2	188.78	No No	232	18.7	18.707	195.15	220.63	No
234	18.6839	18.6955	87.2	188.01	No	233	18.68	18.6864	189.58	211.66	No
	18.6839					234	18.68	18.6863	189.58	210.88	No
235 236		18.6954	87.2 87.2	187.23	No No	235	18.68	18.6863	189.58	210.11	No
	18.6838	18.6952	87.2 87.2	186.48	No No	236	18.68	18.6861	189.58	209.35	No
237	18.6839	18.6952	87.2 97.2	185.72	No No	237	18.68	18.686	189.58	208.61	No
238	18.6839	18.6951	87.2	185	No	238	18.68	18.686	189.58	207.87	No

239	18.6838	18.695	87.2	184.27	No	239	18.68	18.6859	189.58	207.15	No
240	18.6983	18.7092	87.2	181.85	No	240	18.7	18.6998	182.71	196.15	No
241	18.6983	18.7091	87.2	181.02	No	241	18.7	18.6997	182.71	195.3	No
242	18.6983	18.709	87.2	180.18	No	242	18.7	18.6996	182.71	194.47	No
243	18.6983	18.7089	87.2	179.36	No	243	18.7	18.6996	182.71	193.65	No
244	18.6983	18.7088	87.2	178.54	No	244	18.7	18.6994	182.71	192.83	No
245	18.6983	18.7087	87.2	177.74	No	245	18.7	18.6993	182.71	192.03	No
246	18.7812	18.7912	87.2	172.92	No	246	18.78	18.7818	173.86	178.62	No
247	18.7812	18.791	87.2	171.99	No	247	18.78	18.7817	173.86	177.69	No
248	18.7812	18.791	87.2	171.07	No	248	18.78	18.7815	173.86	176.76	No
249	18.7812	18.7908	87.2	170.16	No	249	18.78	18.7815	173.86	175.85	No
250	18.7812	18.7907	87.2	169.26	No	250	18.78	18.7814	173.86	174.95	No
251	19.0029	19.0116	87.2	161.5	No	251	19	19.0025	162.55	159.11	No
252	19.0029	19.0115	87.2	160.45	No	252	19	19.0024	162.55	158.07	No
253	19.0029	19.0114	87.2	159.4	No	253	19	19.0023	162.55	157.03	No
254	19.0029	19.0112	87.2	158.38	No	254	19	19.0021	162.55	156	No
255	19.5182	19.5254	87.2	147.31	No	255	19.52	19.5169	148.53	138.08	No
256	19.5182	19.5253	87.2	146.09	No	256	19.52	19.5168	148.53	136.86	No
257	19.5182	19.5252	87.2	144.9	No	257	19.52	19.5166	148.53	135.66	No
258	20.7002	20.7057	87.2	130.17	No	258	20.7	20.6983	131.64	116.16	No
259	20.7002	20.7055	87.2	128.71	No	259	20.7	20.6981	131.64	114.69	No
260	23.5608	23.564	87.2	109.38	No	260	23.56	23.5581	111.27	93.06	No

Последняя итерация - оптимизационная

Iteration no=3 R=0.0099

MN	Init.L	Finl.L	Input Ti	Output T	D.v	MN	Init.L	Finl.L	Input Ti	Output T	D.v
1	18.7414	18.7451	238.97	242.19	Yes	131	18.7413	18.744	230.37	233.07	Yes
2	18.7414	18.7445	234.38	237.08	Yes	132	18.7414	18.7439	229.74	232.44	Yes
3	18.704	18.7067	226.22	228.76	Yes	133	18.7415	18.7439	229.12	231.82	Yes
4	18.704	18.7064	223.9	225.57	Yes	134	18.7414	18.7438	228.51	231.21	Yes
5	18.6839	18.6856	212.44	214.22	Yes	135	18.704	18.7063	223.17	224.84	Yes
6	18.6839	18.6854	212	212.76	Yes	136	18.704	18.7062	222.44	224.12	Yes
7	18.6983	18.6989	197	198.01	Yes	137	18.704	18.7061	221.73	223.4	Yes
8	18.6983	18.6989	197.96	197.99	Yes	138	18.704	18.706	221.02	222.7	Yes
9	18.7812	18.7808	179.56	179.87	Yes	139	18.704	18.706	220.33	222	Yes
10	18.7812	18.7809	181.43	181	Yes	140	18.704	18.7059	219.65	221.32	Yes
11	19.0029	19.0014	160.18	160.81	Yes	141	18.704	18.7058	218.97	220.64	Yes
12	19.0029	19.0017	162.49	162.86	Yes	142	18.704	18.7057	218.31	219.98	Yes
13	19.5182	19.5159	139.31	139.04	Yes	143	18.6838	18.6852	211.21	211.97	Yes
14	19.5182	19.5162	141.63	141.9	Yes	144	18.6839	18.6852	210.43	211.19	Yes
15	20.7002	20.6972	117.64	118.16	Yes	145	18.6839	18.6851	209.67	210.43	Yes
16	20.7002	20.6977	119.71	121.92	Yes	146	18.6838	18.685	208.91	209.66	Yes
17	23.5608	23.5574	94.96	97.95	Yes	147	18.6839	18.6849	208.16	208.92	Yes

18	23.5608	23.5581	96.57	102.44	Yes	148	18.6839	18.6849	207.42	208.18	Yes
19	31.4006	31.3968	67.99	75.58	Yes	149	18.6838	18.6847	206.7	207.45	Yes
20	31.4006	31.3974	68.74	78.58	Yes	150	18.6983	18.6988	197.1	197.13	Yes
21	18.7414	18.7444	234.38	237.08	Yes	151	18.6983	18.6987	196.26	196.29	Yes
22	18.7414	18.7451	238.97	242.19	Yes	152	18.6983	18.6986	195.43	195.45	Yes
23	18.704	18.7064	223.9	225.57	Yes	153	18.6983	18.6985	194.6	194.63	Yes
24	18.704	18.7067	226.22	228.75	Yes	154	18.6983	18.6984	193.79	193.81	Yes
25	18.6839	18.6854	212	212.75	Yes	155	18.6983	18.6983	192.99	193.01	Yes
26	18.6839	18.6856	212.44	214.22	Yes	156	18.7813	18.7808	180.49	180.06	Yes
27	18.6983	18.6989	197.96	197.99	Yes	157	18.7812	18.7807	179.56	179.12	Yes
28	18.6983	18.6988	197	198.01	Yes	158	18.7812	18.7805	178.63	178.2	Yes
29	18.7812	18.7809	181.43	181	Yes	159	18.7813	18.7805	177.72	177.29	Yes
30	18.7812	18.7808	179.56	179.87	Yes	160	18.7812	18.7804	176.82	176.39	Yes
31	19.0029	19.0017	162.48	162.86	Yes	161	19.0029	19.0015	161.42	161.8	Yes
32	19.0029	19.0014	160.18	160.8	Yes	162	19.0029	19.0014	160.37	160.75	Yes
33	19.5182	19.5162	141.64	141.9	Yes	163	19.0029	19.0013	159.33	159.71	Yes
34	19.5182	19.5159	139.31	139.04	Yes	164	19.0029	19.0012	158.3	158.68	Yes
35	20.7002	20.6977	119.71	121.92	Yes	165	19.5182	19.5161	140.41	140.68	Yes
36	20.7002	20.6972	117.64	118.16	Yes	166	19.5182	19.5159	139.19	139.46	Yes
37	23.5608	23.5581	96.57	102.44	Yes	167	19.5182	19.5158	137.98	138.25	Yes
38	23.5608	23.5574	94.96	97.95	Yes	168	20.7002	20.6975	118.23	120.44	Yes
39	31.4006	31.3974	68.74	78.58	Yes	169	20.7002	20.6974	116.76	118.97	Yes
40	31.4006	31.3968	67.99	75.58	Yes	170	23.5608	23.5578	94.67	100.54	Yes
41	18.7414	18.7443	232.5	235.72	Yes	171	18.7414	18.7444	233.68	236.39	Yes
42	18.704	18.706	219.99	222.51	Yes	172	18.7414	18.7443	233.01	235.7	Yes
43	18.6838	18.6848	206.44	208.21	Yes	173	18.7414	18.7442	232.33	235.03	Yes
44	18.6983	18.6982	191.24	192.25	Yes	174	18.7414	18.7442	231.67	234.37	Yes
45	18.7812	18.7801	174.07	174.38	Yes	175	18.7415	18.7442	231.02	233.72	Yes
46	19.0029	19.0008	154.98	155.62	Yes	176	18.7413	18.744	230.37	233.07	Yes
47	19.5182	19.5153	134.47	134.2		177	18.7414			232.44	Yes
48	20.7002	20.6967	113.24	113.76	Yes	178	18.7415	18.7439	229.12	231.82	Yes
49	23.5608	23.5569	91.16	94.15	Yes	179	18.7414	18.7438	228.51	231.21	Yes
50	31.4006	31.3963	65.23	72.82	Yes	180	18.704	18.7063	223.17	224.84	Yes
51	18.7414	18.7437	227.91	230.61	Yes	181	18.704	18.7062	222.44	224.12	Yes
52	18.704	18.7057	217.66	219.33	Yes	182	18.704	18.7061	221.73	223.4	Yes
53	18.6839	18.6847	205.98	206.74	Yes	183	18.704	18.7061	221.02	222.7	Yes
54	18.6983	18.6982	192.2	192.22	Yes	184	18.704	18.7059	220.33	222	Yes
55	18.7812	18.7803	175.94	175.5	Yes	185	18.704	18.7059	219.65	221.32	Yes
56	19.0029	19.0011	157.29	157.66	Yes	186	18.704	18.7058	218.97	220.64	Yes
57	19.5182	19.5156	136.79	137.06	Yes	187	18.704	18.7057	218.31	219.98	Yes
58	20.7002	20.6972	115.31	117.52	Yes	188	18.6838	18.6852	211.21	211.97	Yes
59	23.5608	23.5575	92.77	98.65	Yes	189	18.6839	18.6852	210.43	211.19	Yes
60	31.4006	31.3969	65.98	75.81	Yes	190	18.6839	18.6851	209.67	210.42	Yes
61	18.7414	18.7437	227.91	230.61	Yes	191	18.6838	18.685	208.9	209.66	Yes
62	18.704	18.7057	217.66	219.33	Yes	192	18.6839	18.685	208.16	208.92	Yes
63	18.6839	18.6847	205.98	206.74	Yes	193	18.6839	18.6849	207.42	208.18	Yes
64	18.6983	18.6982	192.2	192.22	Yes	194	18.6838	18.6847	206.7	207.45	Yes
65	18.7812	18.7803	175.94	175.5	Yes	195	18.6983	18.6988	197.11	197.13	Yes

66	19.0029	19.0011	157.29	157.67	Yes	196	18.6983	18.6987	196.26	196.28	Yes
67	19.5182	19.5156	136.79	137.06	Yes	197	18.6983	18.6986	195.43	195.45	Yes
68	20.7002	20.6971	115.31	117.52	Yes	198	18.6983	18.6985	194.6	194.63	Yes
69	23.5608	23.5575	92.77	98.65	Yes	199	18.6983	18.6984	193.79	193.81	Yes
70	31.4006	31.3969	65.98	75.81	Yes	200	18.6983	18.6983	192.99	193.01	Yes
71	18.7414	18.7444	232.5	235.72	Yes	201	18.7812	18.7808	180.49	180.06	Yes
72	18.704	18.706	219.98	222.51	Yes	202	18.7812	18.7807	179.55	179.12	Yes
73	18.6839	18.6849	206.43	208.21	Yes	203	18.7812	18.7805	178.64	178.2	Yes
74	18.6983	18.6982	191.24	192.25	Yes	204	18.7812	18.7805	177.72	177.29	Yes
75	18.7812	18.7802	174.07	174.38	Yes	205	18.7812	18.7804	176.83	176.39	Yes
76	19.0029	19.0009	154.99	155.61	Yes	206	19.0029	19.0015	161.42	161.8	Yes
77	19.5182	19.5152	134.47	134.2	Yes	207	19.0029	19.0014	160.37	160.75	Yes
78	20.7002	20.6967	113.23	113.75	Yes	208	19.0029	19.0013	159.33	159.71	Yes
79	23.5608	23.5568	91.17	94.15	Yes	209	19.0029	19.0012	158.31	158.68	Yes
80	31.4006	31.3963	65.23	72.82	Yes	210	19.5182	19.516	140.41	140.68	Yes
81	18.7415	18.7451	238.28	241.5	Yes	211	19.5182	19.5159	139.19	139.46	Yes
82	18.7414	18.7449	237.6	240.82	Yes	212	19.5182	19.5157	137.99	138.26	Yes
83	18.7414	18.7448	236.92	240.14	Yes	213	20.7002	20.6975	118.23	120.44	Yes
84	18.7414	18.7447	236.26	239.48	Yes	214	20.7002	20.6974	116.77	118.98	Yes
85	18.7414	18.7447	235.61	238.83	Yes	215	23.5608	23.5578	94.67	100.54	Yes
86	18.7414	18.7446	234.97	238.19	Yes	216	18.7414	18.7451	238.28	241.49	Yes
87	18.7414	18.7446	234.34	237.56	Yes	217	18.7414	18.7449	237.6	240.81	Yes
88	18.7414	18.7445	233.71	236.93	Yes	218	18.7414	18.7449	236.93	240.14	Yes
89	18.7414	18.7444	233.1	236.32	Yes	219	18.7414	18.7447	236.26	239.48	Yes
90	18.704	18.7067	225.48	228.02	Yes	220	18.7415	18.7448	235.61	238.83	Yes
91	18.704	18.7066	224.76	227.3	Yes	221	18.7414	18.7446	234.96	238.19	Yes
92	18.704	18.7065	224.05	226.58	Yes	222	18.7414	18.7446	234.34	237.56	Yes
93	18.704	18.7064	223.34	225.88	Yes	223	18.7414	18.7445	233.72	236.93	Yes
94	18.704	18.7063	222.65	225.18	Yes	224	18.7414	18.7444	233.11	236.32	Yes
95	18.704	18.7062	221.97	224.51	Yes	225	18.704	18.7067	225.49	228.02	Yes
96	18.704	18.7062	221.3	223.83	Yes	226	18.704	18.7066	224.76	227.3	Yes
97	18.704	18.7061	220.64	223.17	Yes	227	18.704	18.7065	224.05	226.59	Yes
98	18.6838	18.6854	211.65	213.43	Yes	228	18.704	18.7064	223.34	225.88	Yes
99	18.6839	18.6854	210.88	212.66	Yes	229	18.704	18.7063	222.65	225.19	Yes
100	18.6839	18.6853	210.11	211.89	Yes	230	18.704	18.7062	221.97	224.5	Yes
101	18.6838	18.6851	209.35	211.13	Yes	231	18.704	18.7061	221.3	223.83	Yes
102	18.6839	18.6851	208.61	210.39	Yes	232	18.704	18.7061	220.63	223.16	Yes
103	18.6838	18.685	207.87	209.65	Yes	233	18.6838	18.6854	211.66	213.43	Yes
104	18.6839	18.6849	207.15	208.93	Yes	234	18.6839	18.6854	210.88	212.66	Yes
105	18.6983	18.6988	196.15	197.16	Yes	235	18.6839	18.6853	210.11	211.89	Yes
106	18.6983	18.6987	195.3	196.31	Yes	236	18.6838	18.6852	209.35	211.14	Yes
107	18.6983	18.6986	194.47	195.48	Yes	237	18.6839	18.6851	208.61	210.39	Yes
108	18.6983	18.6985	193.65	194.66	Yes	238	18.6839	18.685	207.87	209.65	Yes
109	18.6983	18.6984	192.83	193.84	Yes	239	18.6838	18.6849	207.15	208.93	Yes
110	18.6983	18.6983	192.03	193.04	Yes	240	18.6983	18.6988	196.15	197.16	Yes
111	18.7813	18.7807	178.62	178.93	Yes	241	18.6983	18.6987	195.3	196.32	Yes
112	18.7812	18.7806	177.69	178	Yes	242	18.6983	18.6986	194.47	195.48	Yes
113	18.7812	18.7804	176.77	177.08	Yes	243	18.6983	18.6985	193.65	194.66	Yes

114	18.7812	18.7803	175.85	176.17	Yes	244	18.6983	18.6984	192.83	193.84	Yes
115	18.7812	18.7802	174.95	175.27	Yes	245	18.6983	18.6983	192.03	193.04	Yes
116	19.0029	19.0013	159.12	159.74	Yes	246	18.7812	18.7807	178.62	178.93	Yes
117	19.0029	19.0012	158.07	158.69	Yes	247	18.7812	18.7805	177.69	178	Yes
118	19.0029	19.0011	157.03	157.66	Yes	248	18.7812	18.7804	176.76	177.08	Yes
119	19.0029	19.0009	156	156.63	Yes	249	18.7812	18.7803	175.85	176.17	Yes
120	19.5182	19.5157	138.08	137.81	Yes	250	18.7812	18.7803	174.95	175.27	Yes
121	19.5182	19.5156	136.87	136.6	Yes	251	19.0029	19.0013	159.11	159.74	Yes
122	19.5182	19.5154	135.66	135.39	Yes	252	19.0029	19.0012	158.07	158.69	Yes
123	20.7002	20.6971	116.16	116.69	Yes	253	19.0029	19.001	157.03	157.66	Yes
124	20.7002	20.6969	114.69	115.21	Yes	254	19.0029	19.0009	156	156.63	Yes
125	23.5608	23.5571	93.06	96.04	Yes	255	19.5182	19.5157	138.08	137.81	Yes
126	18.7415	18.7445	233.69	236.39	Yes	256	19.5182	19.5156	136.86	136.6	Yes
127	18.7414	18.7443	233	235.7	Yes	257	19.5182	19.5154	135.66	135.39	Yes
128	18.7414	18.7442	232.33	235.03	Yes	258	20.7002	20.697	116.16	116.68	Yes
129	18.7413	18.7441	231.67	234.37	Yes	259	20.7002	20.6969	114.69	115.21	Yes
130	18.7415	18.7442	231.01	233.71	Yes	260	23.5608	23.5571	93.06	96.04	Yes

ПРИЛОЖЕНИЕ.2

Скорость ветра и соответствующую нагрузки на узлы вантовых элементов и жестких элементов (для пилонов).

Cd- аэродинамический коэффициент; P in x – вектор усилий в направлении оси x; Угол атаки ветра-Ang Att

Скорость ветра на высоте Zi, V(zi)=2.5*Vsv*Alog(Zi/f),

If (Re(MN). LE. 0.6) Cd(MN)=1.2

If (Re(MN). GE. 0.6) Cd(MN)=0.9

*** Скорость ветра и соответствующую нагрузки на узлы вантовых элементов

MN	Zi	V(Zi)	Cd	Re	Ang Att	Aexp	P in x
1	116.36	27.06	0.9	3.336	90.0	0.12	0.091
2	116.36	27.06	0.9	3.336	90.0	0.12	0.091
3	114.1	26.97	0.9	3.325	90.0	0.12	0.09
4	114.1	26.97	0.9	3.325	90.0	0.12	0.09
5	111.78	26.89	0.9	3.315	90.0	0.12	0.089
6	111.78	26.89	0.9	3.315	90.0	0.12	0.089
7	109.38	26.79	0.9	3.303	90.0	0.12	0.089
8	109.38	26.79	0.9	3.303	90.0	0.12	0.089
9	106.86	26.69	0.9	3.291	90.0	0.12	0.089
10	106.86	26.69	0.9	3.291	90.0	0.12	0.089
11	104.17	26.59	0.9	3.278	90.0	0.12	0.089
12	104.17	26.59	0.9	3.278	90.0	0.12	0.089

13	101.2	26.46	0.9	3.263	90.0	0.12	0.09
14	101.2	26.46	0.9	3.263	90.0	0.12	0.09
15	97.75	26.32	0.9	3.244	90.0	0.12	0.095
16	97.75	26.32	0.9	3.244	90.0	0.12	0.095
17	93.33	26.12	0.9	3.22	90.0	0.12	0.106
18	93.33	26.12	0.9	3.22	90.0	0.12	0.106
19	86.5	25.8	0.9	3.18	90.0	0.12	0.138
20	86.5	25.8	0.9	3.18	90.0	0.12	0.138
21	116.36	27.06	0.9	3.336	90.0	0.12	0.091
22	116.36	27.06	0.9	3.336	90.0	0.12	0.091
23	114.1	26.97	0.9	3.325	90.0	0.12	0.09
24	114.1	26.97	0.9	3.325	90.0	0.12	0.09
25	111.78	26.89	0.9	3.315	90.0	0.12	0.089
26	111.78	26.89	0.9	3.315	90.0	0.12	0.089
27	109.38	26.79	0.9	3.303	90.0	0.12	0.089
28	109.38	26.79	0.9	3.303	90.0	0.12	0.089
29	106.86	26.69	0.9	3.291	90.0	0.12	0.089
30	106.86	26.69	0.9	3.291	90.0	0.12	0.089
31	100.80	26.59	0.9	3.278	90.0	0.12	0.089
32	104.17	26.59	0.9	3.278	90.0	0.12	0.089
33	104.17	26.46	0.9	3.263	90.0	0.12	0.089
34							
	101.2	26.46	0.9	3.263	90.0	0.12	0.09
35	97.75 07.75	26.32	0.9	3.244	90.0	0.12	0.095
36	97.75	26.32	0.9	3.244	90.0	0.12	0.095
37	93.33	26.12	0.9	3.22	90.0	0.12	0.106
38	93.33	26.12	0.9	3.22	90.0	0.12	0.106
39	86.5	25.8	0.9	3.18	90.0	0.12	0.138
40	86.5	25.8	0.9	3.18	90.0	0.12	0.138
41	50.91	23.54	0.9	2.903	90.0	0.12	0.069
42	51.7	23.61	0.9	2.911	90.0	0.12	0.069
43	52.67	23.69	0.9	2.92	90.0	0.12	0.069
44	53.88	23.78	0.9	2.932	90.0	0.12	0.07
45	55.43	23.9	0.9	2.947	90.0	0.12	0.071
46	57.5	24.06	0.9	2.966	90.0	0.12	0.073
47	60.4	24.27	0.9	2.992	90.0	0.12	0.076
48	64.75	24.56	0.9	3.029	90.0	0.12	0.083
49	72	25.02	0.9	3.084	90.0	0.12	0.098
50	86.5	25.8	0.9	3.18	90.0	0.12	0.138
51	50.91	23.54	0.9	2.903	90.0	0.12	0.069
52	51.7	23.61	0.9	2.911	90.0	0.12	0.069
53	52.67	23.69	0.9	2.92	90.0	0.12	0.069
54	53.88	23.78	0.9	2.932	90.0	0.12	0.07
55	55.43	23.9	0.9	2.947	90.0	0.12	0.071
56	57.5	24.06	0.9	2.966	90.0	0.12	0.073
57	60.4	24.27	0.9	2.992	90.0	0.12	0.076
58	64.75	24.56	0.9	3.029	90.0	0.12	0.083
59	72	25.02	0.9	3.084	90.0	0.12	0.098
60	86.5	25.8	0.9	3.18	90.0	0.12	

61	50.91	23.54	0.9	2.903	90.0	0.12	0.069
62	51.7	23.61	0.9	2.911	90.0	0.12	0.069
63	52.67	23.69	0.9	2.92	90.0	0.12	0.069
64	53.88	23.78	0.9	2.932	90.0	0.12	0.07
65	55.43	23.9	0.9	2.947	90.0	0.12	0.071
66	57.5	24.06	0.9	2.966	90.0	0.12	0.073
67	60.4	24.27	0.9	2.992	90.0	0.12	0.076
68	64.75	24.56	0.9	3.029	90.0	0.12	0.083
69	72	25.02	0.9	3.084	90.0	0.12	0.098
70	86.5	25.8	0.9	3.18	90.0	0.12	0.138
71	50.91	23.54	0.9	2.903	90.0	0.12	0.069
72	51.7	23.61	0.9	2.911	90.0	0.12	0.069
73	52.67	23.69	0.9	2.92	90.0	0.12	0.069
74	53.88	23.78	0.9	2.932	90.0	0.12	0.07
75	55.43	23.9	0.9	2.947	90.0	0.12	0.071
76	57.5	24.06	0.9	2.966	90.0	0.12	0.073
77	60.4	24.27	0.9	2.992	90.0	0.12	0.076
78	64.75	24.56	0.9	3.029	90.0	0.12	0.083
79	72	25.02	0.9	3.084	90.0	0.12	0.098
80	86.5	25.8	0.9	3.18	90.0	0.12	0.138
81	109.09	26.78	0.9	3.302	90.0	0.12	0.089
82	101.82	26.49	0.9	3.266	90.0	0.12	0.087
83	94.55	26.17	0.9	3.227	90.0	0.12	0.085
84	87.27	25.83	0.9	3.185	90.0	0.12	0.083
85	80	25.46	0.9	3.139	90.0	0.12	0.08
86	72.73	25.06	0.9	3.089	90.0	0.12	0.078
87	65.45	24.61	0.9	3.034	90.0	0.12	0.075
88	58.18	24.11	0.9	2.973	90.0	0.12	0.072
89	50.91	23.54	0.9	2.903	90.0	0.12	0.069
90	106.3	26.67	0.9	3.288	90.0	0.12	0.088
91	98.5	26.35	0.9	3.248	90.0	0.12	0.086
92	90.7	26	0.9	3.205	90.0	0.12	0.084
93	82.9	25.62	0.9	3.158	90.0	0.12	0.081
94	75.1	25.2	0.9	3.106	90.0	0.12	0.079
95	67.3	24.73	0.9	3.049	90.0	0.12	0.076
96	59.5	24.21	0.9	2.984	90.0	0.12	0.073
97	51.7	23.61	0.9	2.911	90.0	0.12	0.069
98	103.33	26.55	0.9	3.273	90.0	0.12	0.087
99	94.89	26.19	0.9	3.229	90.0	0.12	0.085
100	86.44	25.79	0.9	3.18	90.0	0.12	0.082
101	78	25.36	0.9	3.126	90.0	0.12	0.08
102	69.56	24.87	0.9	3.066	90.0	0.12	0.077
103	61.11	24.32	0.9	2.998	90.0	0.12	0.073
104	52.67	23.69	0.9	2.92	90.0	0.12	0.069
105	100.13	26.42	0.9	3.257	90.0	0.12	0.086
106	90.88	26.01	0.9	3.206	90.0	0.12	0.084
107	81.63	25.55	0.9	3.15	90.0	0.12	0.081
108	72.38	25.04	0.9	3.087	90.0	0.12	0.078

109	63.13	24.46	0.9	3.015	90.0	0.12	0.074
110	53.88	23.78	0.9	2.932	90.0	0.12	0.07
111	96.57	26.26	0.9	3.238	90.0	0.12	0.086
112	86.29	25.79	0.9	3.179	90.0	0.12	0.083
113	76	25.25	0.9	3.112	90.0	0.12	0.079
114	65.71	24.63	0.9	3.036	90.0	0.12	0.075
115	55.43	23.9	0.9	2.947	90.0	0.12	0.071
116	92.5	26.08	0.9	3.215	90.0	0.12	0.086
117	80.83	25.51	0.9	3.145	90.0	0.12	0.082
118	69.17	24.85	0.9	3.063	90.0	0.12	0.078
119	57.5	24.06	0.9	2.966	90.0	0.12	0.073
120	87.6	25.85	0.9	3.187	90.0	0.12	0.086
121	74	25.13	0.9	3.099	90.0	0.12	0.082
122	60.4	24.27	0.9	2.992	90.0	0.12	0.076
123	81.25	25.53	0.9	3.147	90.0	0.12	0.089
124	64.75	24.56	0.9	3.029	90.0	0.12	0.083
125	72	25.02	0.9	3.084	90.0	0.12	0.098
126	109.09	26.78	0.9	3.302	90.0	0.12	0.089
127	101.82	26.49	0.9	3.266	90.0	0.12	0.087
128	94.55	26.17	0.9	3.227	90.0	0.12	0.085
129	87.27	25.83	0.9	3.185	90.0	0.12	0.083
130	80	25.46	0.9	3.139	90.0	0.12	0.08
131	72.73	25.06	0.9	3.089	90.0	0.12	0.078
132	65.45	24.61	0.9	3.034	90.0	0.12	0.075
133	58.18	24.11	0.9	2.973	90.0	0.12	0.072
134	50.91	23.54	0.9	2.903	90.0	0.12	0.069
135	106.3	26.67	0.9	3.288	90.0	0.12	0.088
136	98.5	26.35	0.9	3.248	90.0	0.12	0.086
137	90.7	26	0.9	3.205	90.0	0.12	0.084
138	82.9	25.62	0.9	3.158	90.0	0.12	0.081
139	75.1	25.2	0.9	3.106	90.0	0.12	0.079
140	67.3	24.73	0.9	3.049	90.0	0.12	0.076
141	59.5	24.21	0.9	2.984	90.0	0.12	0.073
142	51.7	23.61	0.9	2.911	90.0	0.12	0.069
143	103.33	26.55	0.9	3.273	90.0	0.12	0.087
144	94.89	26.19	0.9	3.229	90.0	0.12	0.085
145	86.44	25.79	0.9	3.18	90.0	0.12	0.082
146	78	25.36	0.9	3.126	90.0	0.12	0.08
147	69.56	24.87	0.9	3.066	90.0	0.12	0.077
148	61.11	24.32	0.9	2.998	90.0	0.12	0.073
149	52.67	23.69	0.9	2.92	90.0	0.12	0.069
150	100.13	26.42	0.9	3.257	90.0	0.12	0.086
151	90.88	26.01	0.9	3.206	90.0	0.12	0.084
152	81.63	25.55	0.9	3.15	90.0	0.12	0.081
153	72.38	25.04	0.9	3.087	90.0	0.12	0.078
154	63.13	24.46	0.9	3.015	90.0	0.12	0.074
155	53.88	23.78	0.9	2.932	90.0	0.12	0.07
156	96.57	26.26	0.9	3.238	90.0	0.12	0.086

157	86.29	25.79	0.9	3.179	90.0	0.12	0.083
158	76	25.25	0.9	3.112	90.0	0.12	0.079
159	65.71	24.63	0.9	3.036	90.0	0.12	0.075
160	55.43	23.9	0.9	2.947	90.0	0.12	0.071
161	92.5	26.08	0.9	3.215	90.0	0.12	0.086
162	80.83	25.51	0.9	3.145	90.0	0.12	0.082
163	69.17	24.85	0.9	3.063	90.0	0.12	0.078
164	57.5	24.06	0.9	2.966	90.0	0.12	0.073
165	87.6	25.85	0.9	3.187	90.0	0.12	0.086
166	74	25.13	0.9	3.099	90.0	0.12	0.082
167	60.4	24.27	0.9	2.992	90.0	0.12	0.076
168	81.25	25.53	0.9	3.147	90.0	0.12	0.089
169	64.75	24.56	0.9	3.029	90.0	0.12	0.083
170	72	25.02	0.9	3.084	90.0	0.12	0.098
171	109.09	26.78	0.9	3.302	90.0	0.12	0.089
172	101.82	26.49	0.9	3.266	90.0	0.12	0.087
173	94.55	26.17	0.9	3.227	90.0	0.12	0.085
174	87.27	25.83	0.9	3.185	90.0	0.12	0.083
175	80	25.46	0.9	3.139	90.0	0.12	0.08
176	72.73	25.06	0.9	3.089	90.0	0.12	0.078
177	65.45	24.61	0.9	3.034	90.0	0.12	0.075
178	58.18	24.11	0.9	2.973	90.0	0.12	0.072
179	50.91	23.54	0.9	2.903	90.0	0.12	0.069
180	106.3	26.67	0.9	3.288	90.0	0.12	0.088
181	98.5	26.35	0.9	3.248	90.0	0.12	0.086
182	90.7	26	0.9	3.205	90.0	0.12	0.084
183	82.9	25.62	0.9	3.158	90.0	0.12	0.081
184	75.1	25.2	0.9	3.106	90.0	0.12	0.079
185	67.3	24.73	0.9	3.049	90.0	0.12	0.076
186	59.5	24.21	0.9	2.984	90.0	0.12	0.073
187	51.7	23.61	0.9	2.911	90.0	0.12	0.069
188	103.33	26.55	0.9	3.273	90.0	0.12	0.087
189	94.89	26.19	0.9	3.229	90.0	0.12	0.085
190	86.44	25.79	0.9	3.18	90.0	0.12	0.082
191	78	25.36	0.9	3.126	90.0	0.12	0.08
192	69.56	24.87	0.9	3.066	90.0	0.12	0.077
193	61.11	24.32	0.9	2.998	90.0	0.12	0.073
194	52.67	23.69	0.9	2.92	90.0	0.12	0.069
195	100.13	26.42	0.9	3.257	90.0	0.12	0.086
196	90.88	26.01	0.9	3.206	90.0	0.12	0.084
197	81.63	25.55	0.9	3.15	90.0	0.12	0.081
198	72.38	25.04	0.9	3.087	90.0	0.12	0.078
199	63.13	24.46	0.9	3.015	90.0	0.12	0.074
200	53.88	23.78	0.9	2.932	90.0	0.12	0.07
201	96.57	26.26	0.9	3.238	90.0	0.12	0.086
202	86.29	25.79	0.9	3.179	90.0	0.12	0.083
203	76	25.25	0.9	3.112	90.0	0.12	0.079
204	65.71	24.63	0.9	3.036	90.0	0.12	0.075
			_				

205	55.43	23.9	0.9	2.947	90.0	0.12	0.071
206	92.5	26.08	0.9	3.215	90.0	0.12	0.086
207	80.83	25.51	0.9	3.145	90.0	0.12	0.082
208	69.17	24.85	0.9	3.063	90.0	0.12	0.078
209	57.5	24.06	0.9	2.966	90.0	0.12	0.073
210	87.6	25.85	0.9	3.187	90.0	0.12	0.086
211	74	25.13	0.9	3.099	90.0	0.12	0.082
212	60.4	24.27	0.9	2.992	90.0	0.12	0.076
213	81.25	25.53	0.9	3.147	90.0	0.12	0.089
214	64.75	24.56	0.9	3.029	90.0	0.12	0.083
215	72	25.02	0.9	3.084	90.0	0.12	0.098
216	109.09	26.78	0.9	3.302	90.0	0.12	0.089
217	101.82	26.49	0.9	3.266	90.0	0.12	0.087
218	94.55	26.17	0.9	3.227	90.0	0.12	0.085
219	87.27	25.83	0.9	3.185	90.0	0.12	0.083
220	80	25.46	0.9	3.139	90.0	0.12	0.08
221	72.73	25.06	0.9	3.089	90.0	0.12	0.078
222	65.45	24.61	0.9	3.034	90.0	0.12	0.075
223	58.18	24.11	0.9	2.973	90.0	0.12	0.072
224	50.91	23.54	0.9	2.903	90.0	0.12	0.069
225	106.3	26.67	0.9	3.288	90.0	0.12	0.088
226	98.5	26.35	0.9	3.248	90.0	0.12	0.086
227	90.7	26	0.9	3.205	90.0	0.12	0.084
228	82.9	25.62	0.9	3.158	90.0	0.12	0.081
229	75.1	25.2	0.9	3.106	90.0	0.12	0.079
230	67.3	24.73	0.9	3.049	90.0	0.12	0.076
231	59.5	24.21	0.9	2.984	90.0	0.12	0.073
232	51.7	23.61	0.9	2.911	90.0	0.12	0.069
233	103.33	26.55	0.9	3.273	90.0	0.12	0.087
234	94.89	26.19	0.9	3.229	90.0	0.12	0.085
235	86.44	25.79	0.9	3.18	90.0	0.12	0.082
236	78	25.36	0.9	3.126	90.0	0.12	0.08
237	69.56	24.87	0.9	3.066	90.0	0.12	0.077
238	61.11	24.32	0.9	2.998	90.0	0.12	0.073
239	52.67	23.69	0.9	2.92	90.0	0.12	0.069
240	100.13	26.42	0.9	3.257	90.0	0.12	0.086
241	90.88	26.01	0.9	3.206	90.0	0.12	0.084
242	81.63	25.55	0.9	3.15	90.0	0.12	0.081
243	72.38	25.04	0.9	3.087	90.0	0.12	0.078
244	63.13	24.46	0.9	3.015	90.0	0.12	0.074
245	53.88	23.78	0.9	2.932	90.0	0.12	0.07
246	96.57	26.26	0.9	3.238	90.0	0.12	0.086
247	86.29	25.79	0.9	3.179	90.0	0.12	0.083
248	76	25.25	0.9	3.112	90.0	0.12	0.079
249	65.71	24.63	0.9	3.036	90.0	0.12	0.075
250	55.43	23.9	0.9	2.947	90.0	0.12	0.071
251	92.5	26.08	0.9	3.215	90.0	0.12	0.086
252	80.83	25.51	0.9	3.145	90.0	0.12	0.082

253	69.17	24.85	0.9	3.063	90.0	0.12	0.078
254	57.5	24.06	0.9	2.966	90.0	0.12	0.073
255	87.6	25.85	0.9	3.187	90.0	0.12	0.086
256	74	25.13	0.9	3.099	90.0	0.12	0.082
257	60.4	24.27	0.9	2.992	90.0	0.12	0.076
258	81.25	25.53	0.9	3.147	90.0	0.12	0.089
259	64.75	24.56	0.9	3.029	90.0	0.12	0.083
260	72	25.02	0.9	3.084	90.0	0.12	0.098

260 72 25.02 0.9 3.084 90.0 0.12 0.098 *** Скорость ветра и соответствующую нагрузки на жестких элементов (для пилонов)

MN	Zi	V(Zi)	Cd	Re	Ang Att	Aexp	P IN X
261	119	27.15	2	0	90.0	3	0.542
262	117	27.08	2	0	90.0	3	0.539
263	115	27.01	2	0	90.0	3	0.536
264	113	26.93	2	0	90.0	3	0.534
265	111	26.86	2	0	90.0	3	0.531
266	109	26.78	2	0	90.0	3	0.527
267	107	26.7	2	0	90.0	3	0.524
268	105	26.62	2	0	90.0	3	0.521
269	103	26.54	2	0	90.0	3	0.518
270	119	27.15	2	0	90.0	3	0.542
271	117	27.08	2	0	90.0	3	0.539
272	115	27.01	2	0	90.0	3	0.536
273	113	26.93	2	0	90.0	3	0.534
274	111	26.86	2	0	90.0	3	0.531
275	109	26.78	2	0	90.0	3	0.527
276	107	26.7	2	0	90.0	3	0.524
277	105	26.62	2	0	90.0	3	0.521
278	103	26.54	2	0	90.0	3	0.518
279	96.83	26.28	2	0	90.0	3	2.624
280	86.5	25.8	2	0	90.0	3	2.529
281	76.17	25.26	2	0	90.0	3	2.424
282	65.83	24.64	2	0	90.0	3	2.307
283	55.5	23.91	2	0	90.0	3	2.173
284	45.17	23.03	2	0	90.0	3	2.016
285	96.83	26.28	2	0	90.0	3	2.624
286	86.5	25.8	2	0	90.0	3	2.529
287	76.17	25.26	2	0	90.0	3	2.424
288	65.83	24.64	2	0	90.0	3	2.307
289	55.5	23.91	2	0	90.0	3	2.173
290	45.17	23.03	2	0	90.0	3	2.016
291	35	21.95	2	0	90.0	5	2.954
292	25	20.52	2	0	90.0	5	2.581
293	15	18.35	2	0	90.0	5	2.064
294	5	16.63	2	0	90.0	5	1.694
295	35	21.95	2	0	90.0	5	2.954
296	25	20.52	2	0	90.0	5	2.581

297	15	18.35	2	0	90.0	5	2.064
298	5	16.63	2	0	90.00	5	1.694

ПЕРЕЛОЖЕНИЕ 3 Акт внедрение

University of Mansoura Faculty of Engineering Department of Structural Engineering

Declaration of Approval

I hereby approve the dissertation results accomplished by the PhD student/ Basem Osami Saied Rageh, Dept. of Structural Mechanics, Saint-Petersburg State University of Architecture and Civil Engineering, Saint-Petersburg, Russia.

The additionally-suggested algorithms, developed and written in FORTRAN language by the author which were based on the written program developed by me, have demonstrated an approach which has shown to be of a scientific and creditable value.

Thus, based on the author's algorithms along with the achieved results, I recommend applying it to scientific research.

Prof. Dr/ Mohamed Naguib M. Abo El-Saad

Professor of Theory of Structures

M. Naguilo

Former Head of Dept. Of Structural Engineering

Faculty of Engineering

Mansoura University

Mansoura, Egypt

Date: 17/8/2014

Prof. Dr/ Zaki Mohamed Zidan

Dean of Faculty of Engineering

Faculty of Engineering

Mansoura University

Mansoura, Egypt

Мансурский университет

Инженерный факультет

Отделение строительных конструкций

Декларация об апробировании

Я настоящим одобряю результаты выполненные аспирантом кафедры строительной механики Санкт-Петербургского архитектурно-строительного университета (Санкт-Петербург, Россия) **Басемом Рагех.**

Дополнительно предлагаемые алгоритмы, разработанные и написанные на языке ФОРТРАН автором, основанные на написанной мною программе, продемонстрировали подход, который показал научную и перспективную ценность.

Таким образом, полученные автором результаты, основанные на его алгоритмах, я рекомендую использовать в научных исследованиях.

Проф. д. Mohamed Naguib M. Abo EI-Saad Проф. д. Zaki Mohamed Zidan

(подпись)

(подпись)

Профессор теории сооружений

Бывший зав. отделением

Строительных конструкций

Инженерный факультет

Мансуровский университет

Г. Мансура, Египет

(печать)

Дата: 17.08. 2014.

(На обороте еще три печати)

Декан инженерного факультета

Инженерный факультет

Мансуровский университет

г. Мансура, Египет