Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный архитектурно-строительный университет»

На правах рукописи

ЕЛИСТРАТОВ Владимир Николаевич

РАЗВИТИЕ МЕТОДОВ РАСЧЕТА СЖАТЫХ ЖЕЛЕЗО-БЕТОННЫХ ЭЛЕМЕНТОВ ПРИ ДЛИТЕЛЬНОМ ЗАГРУЖЕНИИ С УЧЕТОМ МГНОВЕННОЙ НЕЛИНЕЙНОСТИ БЕТОНА

Специальность 05.23.01 – Строительные конструкции, здания и сооружения

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата технических наук

Научный руководитель:

САНЖАРОВСКИЙ Рудольф Сергеевич

доктор технических наук, профессор, заслуженный деятель науки и техники Российской Федерации

и техники госсийской федераци

Санкт-Петербург – 2014

оглавление

ВВЕДЕНИЕ	5
ГЛАВА 1. МЕТОДЫ РАСЧЕТА СЖАТЫХ ЖЕЛЕЗОБЕТОННЫХ	
ЭЛЕМЕНТОВ С УЧЕТОМ НЕЛИНЕЙНОЙ ПОЛЗУЧЕСТИ	14
1.1. Расчет сжатых железобетонных элементов при длительном загружении	.14
1.2. Феноменологические теории ползучести бетона применяемые в расчетах	
железобетонных конструкций	24
1.2.1. Теория упруго-ползучего тела	28
1.2.2. Теория упругой наследственности бетона	30
1.2.3. Теория старения бетона	32
1.3. Экспериментальное получение диаграмм мгновенного деформирования	
бетона с ниспадающим участком и их аналитические выражения	35
Выводы	43
ГЛАВА 2. ИССЛЕДОВАНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО	
СОСТОЯНИЯ СЖАТЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ С УЧЕТОМ	
МГНОВЕННОЙ НЕЛИНЕЙНОСТИ И ПОЛЗУЧЕСТИ БЕТОНА	44
2.1. Деформирование бетона при кратковременном загружении	44
2.2. Расчет железобетонных элементов с учетом мгновенной нелинейности в	
рамках нелинейной теории старения бетона	53
2.3. Расчет железобетонных элементов при совместном учете мгновенной	
нелинейности и ползучести бетона на основе теории упруго-ползучего тела	65
2.4. Расчет железобетонных элементов с использованием теории упругой	
наследственности бетона с учетом мгновенной нелинейности бетона	68
Выводы	78
ГЛАВА 3. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ДЛИТЕЛЬНОГО	
ЗАГРУЖЕНИЯ СЖАТЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ	80
3.1. Исходные материалы для изготовления образцов	81
3.2. Основные измерительные приборы и испытательное оборудование	84
3.3. Армирование железобетонных элементов	86

3.4. Проектирование и приготовление бетонной смеси	
3.5. Изготовление образцов и их хранение до испытаний	
3.6. Методика экспериментальных исследований	
3.6.1. Определение показателей R_{κ} , R_b , $R_{\text{ж.б}}$ и E_b	
3.6.2. Определение деформации усадки бетона	
3.6.3. Определение продольных деформаций железобетонных элементог	в 98
3.7. Результаты экспериментальных исследований	100
3.7.1. Результаты кратковременных испытаний	100
3.7.2. Результаты длительных испытаний	103
3.8. Обработка результатов экспериментальных	
исследований. Численный анализ	110
Выводы	120
ГЛАВА 4. РАСЧЕТ НОРМАТИВНОЙ УСЛОВНОЙ КРИТИЧЕСКОЙ	
СИЛЫ ДЛЯ СЖАТЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ	121
4.1. Определение условной критической силы по нормативной	
методике и по предложениям автора	
Выводы	137
ОБЩИЕ ВЫВОДЫ	
СПИСОК ЛИТЕРАТУРЫ	
ПРИЛОЖЕНИЯ	157
Приложение А (обязательное). Журнал определения прочности по	
контрольным образцам	
Приложение Б (справочное). Журнал испытания бетонных образцов	
по определению величины деформации усадки є _{ус}	
Приложение В (справочное). Документ о качестве портландцемента	
Приложение Г (справочное). Паспорт на песок для строительных	
работ	
Приложение Д (справочное). Паспорт на щебень гранитный фракции	
5-10 мм для строительных работ	

Приложение Е (справочное). Документ о качестве и сертификат
проволоки Вр-1 168
Приложение Ж (справочное). Заключение о поверке электронных
весов <i>ТВ-S</i> -32.2- <i>А</i> 2
Приложение И (справочное). Паспорт на гигрометр
психометрический ВИТ-1 172
Приложение К (справочное). Паспорт на гигрометр
психометрический ВИТ-2 173
Приложение Л (справочное). Заключение о поверке
динамометра ДОС-3-200И 174
Приложение М (справочное). Выпускной аттестат одного из
тензометров ТА-2-1 175
Приложение Н (справочное). Паспорт одной из многооборотных
измерительных головок модели 05102 класса точности 1 176
Приложение П (справочное). Свидетельство о поверке машины
сжатия МС-1000 177
Приложение Р (справочное). Свидетельство о поверке пресса
испытательного ПСУ-250 178
Приложение С (справочное). Протокол испытаний металлических
прокладок на твердость по Бринеллю 179
Приложение Т (справочное). Акт о внедрении результатов
диссертационного исследования 180

введение

Сжатые железобетонные элементы широко распространены в практике строительства промышленных и гражданских зданий и сооружений. К ним относятся несущие колонны и стены одноэтажных и многоэтажных зданий различного назначения, опоры-стойки секционных мостов, сжатые элементы ферм (верхние пояса, стойки, некоторые раскосы) и другие элементы конструкций.

В железобетонных элементах соединены два разнородных материла: арматура, работающая упруго по линейному закону Гука. стальная И упруговязкопластический бетон, который сочетает в себе упругие и пластические свойства и, находясь под действием внешней нагрузки, обладает способностью деформироваться во времени. Такое явление в бетоне носит название ползучести. Ползучесть бетона существенно влияет на прочность, устойчивость И долговечность бетонных и железобетонных конструкций, находящихся как в стадии строительства, так и в процессе эксплуатации.

Длительные деформации бетона в расчетах железобетонных конструкций рассчитываются с помощью применения теорий ползучести бетона, которые исторически развивались в трех направлениях: теория упруго-ползучего тела, теория упругой наследственности бетона и теория старения (модифицированная теория старения) бетона. Однако, ни одна из них не дает точного описания процесса деформирования железобетонных конструкций под длительной нагрузкой [77], так как при расчетах мгновенные деформации бетона считают пропорциональными напряжениям вплоть до достижения напряжений в бетоне предела прочности (закона Гука) [4, 6, 14, 18, 20 – 23, 26, 27, 34, 78, 79, 98, 106, 109, 128, 134, 135, 142 и др.]. Данное положение внедрено в российские действующие нормы по железобетону СП 52-101-2003 [118].

Многочисленные экспериментальные исследования [63, 95, 126, 159, 164 и др.] показали, что бетон обладает нелинейной зависимостью между напряжениями и деформациями для случая кратковременного сжатия, и диаграмма мгновенного деформирования имеет ниспадающий участок

5

(мгновенная нелинейность). Нелинейная связь между напряжениями бетона и деформациями проявляется также и при длительном действии нагрузки. Отсюда следует, что применением теории упругого железобетона невозможно правильно оценивать работу железобетонных конструкций под длительной нагрузкой, а существующие расчетные формулы, полученные в предположении мгновенноупругой работы бетона, не позволяют в полной мере исследовать напряженнодеформированное состояние сжатых железобетонных элементов при различных уровнях длительного загружения.

В европейских нормах по железобетону *Eurocode 2* [156] в качестве расчетной зависимости между мгновенными деформациями и напряжениями принимается нелинейная диаграмма с ниспадающим участком. Данную кривую аппроксимирует формула Саржина (*Muharrem Sargin*), которая позволяет учитывать работу бетона при любых уровнях загружения. Это важно для развития теории железобетона, в том числе при изучении напряженно деформированного состояния железобетонных конструкций в условиях нелинейной ползучести, где под действием внешней нагрузки происходит перераспределение напряжений с бетона на арматуру.

Введенный в действие с 01 января 2013 г. СП 63.13330.2012 [119] в дополнение к СП 52–101–2003 [118] в приложении содержит нелинейную диаграмму мгновенного деформирования бетона и аппроксимирующую ее аналитическую зависимость (формула Карпенко Н. И.), имеющую справочный характер.

Приведенные в российских нормах формулы расчетов железобетонных конструкций при длительном загружении основаны на применении закона Гука и не учитывают мгновенную нелинейность бетона при расчетах на ползучесть. Имеющиеся в научной литературе теоретические выкладки, построенные на пропорциональности деформаций бетона мгновенных ОТ напряжений, неприменимы исследования напряженно-деформированного для состояния железобетона при средних и высоких уровнях загружения, характеризующихся проявлением мгновенной и длительной нелинейностью бетона.

6

Проблема учета мгновенных нелинейных деформаций при исследовании изменения во времени напряжений бетона в сжатых железобетонных элементах с учетом ползучести бетона является сложной задачей. Александровский Р. С. указывал, что «учесть одновременно зависимость модуля упругости от напряжений и от возраста бетона весьма трудно. Поэтому современная теория ползучести бетона учитывает только изменение модуля во времени» [4, с. 154]. Необходимость проведения исследований в этой области указывали известные ученые: Байков В. Н. [9], Бондаренко В. М. [16, 17], Прокопович И. Е. [107], Карпенко Н. И. [71] и др. В частности, Прокопович И. Е., выделяя центральносжатые элементы, подчеркивал, что для совершенствования теории железобетона «необходимы дополнительные экспериментальные как U теоретические исследования сопротивления бетонных и железобетонных элементов, так и увязка оптимальных и квазиоптимальных режимов с реальными условиями загружения» [107, с. 5].

Актуальность исследования.

Современные уравнения ползучести бетона построены на основе закона Гука для описания мгновенного деформирования бетона. Экспериментальнотеоретические исследования [9, 31, 63, 64, 83, 95, 105, 124, 126, 151, 154, 159, 164, 165, 171 и др.], проведенные со второй половины 20 века в СССР и в других странах мира, показали, что зависимость между напряжениями и относительной мгновенной деформацией бетона для случая кратковременного сжатия является нелинейной и имеет ниспадающий участок. Существующие уравнения ползучести применимы для уровня загружения не более 20 % от призменной прочности бетона и не позволяют описывать процессы деформирования бетона при высоких уровнях загружения [116]. В связи с этим создание методов расчета на ползучесть бетона, учитывающих мгновенную нелинейность бетона является актуальной и крайне важной задачей, требующей решения для развития теории железобетона.

Степень разработанности темы исследования.

Несмотря на большое количество экспериментальных и теоретических работ, посвященных исследованию напряженно-деформированного состояния

сжатых железобетонных элементов с учетом ползучести [6, 21, 27, 87, 106, 134, 135, 140 и др.], мгновенная нелинейность бетона в них не учитывается. В частности, Гвоздев А. А., Панарин Н. Я., Александровский Р. С., Васильев П. И., Прокопович И. Е., Арутюнян Н. Х., и др. проводили исследования сжатых железобетонных элементов В рамках теории упруго-ползучего тела: Прокопович И. Е., Ржаницын А. Р. и др. – в рамках теории упругой наследственности бетона; Уитни (Charles S. Whitney), Дишингер (Fr. Dischinger), Глэнвилль (W. H. Glanville), Улицкий И. И. Голышев А. Б., Столяров Я. В., Лившиц Я. Д., Яценко Е. А. – в рамках теории старения бетона. При этом формулы, показывающие изменения напряжений бетона и арматуры, получены на основе закона Гука, входящего в соответствующие теории ползучести. Считалось, что закон Гука справедлив вплоть до достижения бетона предела прочности. Внедрение в инженерную практику нелинейной теории железобетона для оценки напряженно-деформированного состояния сдерживалось отсутствием подходящих теорий ползучести, сложностью теоретических выкладок, трудоёмкостью вычислений и, в основном, невозможностью получения конечных формул в явном виде с учетом мгновенной нелинейности бетона.

С помощью существующих линейных уравнений ползучести хорошо описывается ползучесть бетона при малых уровнях загружения (до 0,2R, здесь R – призменная прочность бетона), но при более высоких уровнях загружения вплоть до призменной прочности бетона линейные модели показывали плохое описание экспериментальных данных и не соответствовали реальной физической нелинейности бетона. Для учета нелинейной ползучести в уравнениях, описывающих деформации ползучести, была введена нелинейная функция напряжения, с помощью которой достигалась некоторая согласованность с экспериментами по ползучести, но мгновенная нелинейность бетона при этом не учитывалась.

Идея учета мгновенных нелинейных деформаций в уравнениях ползучести была показана в научных разработках Бондаренко В. М. и Бондаренко С. В. и заключалась в том, что в интегральных уравнениях Васильева П. И., Гвоздева А. А., Галустова К. З. и других ученых слагаемое, описывающее деформации ползучести бетона, умножалось нелинейную функцию на напряжения, записанную в общем виде. Одновременно Бондаренко В. М. указал, что применение таких уравнений «приводит к математическим трудностям, неприемлемым для прикладного расчетно-конструкторского использования». Санжаровский Р. С. [115] предложил учитывать мгновенные нелинейные деформации бетона, в том числе с помощью введения в аналитические зависимости теорий ползучести бетона новой функции $\Phi(\sigma_6)$ вместо напряжения бетона σ_б. Настоящая работа посвящена развитию идеи Санжаровского Р. С. по уточнению теорий ползучести бетона и применению полученных уравнений ползучести в исследовании напряженно-деформированного состояния сжатых железобетонных колонн, для которых характерны нелинейная связь между напряжениями и деформациями на всех этапах загружения.

Цель и задачи исследования.

Цель исследования – разработка методов расчета сжатых стержневых железобетонных элементов на ползучесть с учетом мгновенной нелинейности бетона при высоких уровнях длительного загружения.

Задачи исследования:

1. Изучить существующие подходы к определению напряженнодеформированного состояния сжатых железобетонных элементов в рамках нелинейных теорий ползучести бетона и выявить имеющиеся в них проблемы.

2. Получить феноменологическое уравнение ползучести бетона, позволяющее учитывать различные нелинейные зависимости между мгновенными деформациями бетона и напряжениями, в том числе в соответствии с требованием *Eurocode* 2.

3. Исследовать напряженно-деформированное состояние сжатых железобетонных элементов, подверженных высоким уровням длительного загружения.

4. Изучить влияние нелинейной зависимости между мгновенными деформациями и напряжениями на изменение напряжений и деформаций в бетоне и арматуре. 5. Изучить влияние мгновенной нелинейности бетона на изменение характеристики ползучести путем проведения экспериментальных исследований длительного загружения сжатых железобетонных элементов.

6. Уточнить методику расчета условной критической силы для сжатых железобетонных элементов по правилам СП 52–101–2003 и СП 63.13330.2012 путем введения поправочных коэффициентов, учитывающих мгновенную и длительную нелинейность деформирования бетона.

Объектом исследования является напряжённо-деформированное состояние сжатых железобетонных элементов при высоких уровнях длительного загружения с учетом нелинейной зависимости между мгновенными деформациями и напряжениями, нормируемой *Eurocode* 2 (формула Саржина) и СП 63.13330.2012 (формула Карпенко Н. И.).

Предметом исследования является экспериментально-теоретическая модель напряженно-деформированного состояния сжатой колонны при длительном загружении.

Научная новизна исследования заключается в разработке новой методики в теории железобетона, направленной на определение длительного напряженнодеформированного состояния сжатых железобетонных элементов при высоких уровнях загружения с учетом мгновенной нелинейности бетона и на совершенствование методики расчета условной критической силы:

1. Предложены уточненные модели ползучести бетона в рамках различных теорий ползучести, которые позволяют учитывать нелинейные зависимости между мгновенными деформациями бетона и напряжениями в соответствии с требованиями *Eurocode* 2.

2. Построены разрешающие уравнения по расчету напряжений и деформаций бетона и арматуры в сжатых железобетонных элементах, подверженных высоким уровням длительного загружения с учетом мгновенной нелинейности и нелинейной ползучести бетона.

3. Поставлены и проведены эксперименты по длительному загружению сжатых железобетонных элементов и изучению влияния мгновенной

нелинейности бетона на напряжения и деформации в бетоне и арматуре, а также на величину характеристики ползучести бетона.

4. Предложен приближенный способ учета мгновенной и длительной нелинейности деформирования бетона в расчетах нормативной условной критической силы.

Методологической основой диссертационного исследования послужили общепринятые положения теорий ползучести бетона, известные допущения при расчете железобетонных конструкций и метод эксперимента.

Область исследования соответствует требованию паспорта научной специальности ВАК 05.23.01 – Строительные конструкции, здания и сооружения и заключается в создании наиболее совершенных и надежных конструкций в развитие пункта 3: «Создание и развитие эффективных методов расчета и экспериментальных исследований вновь возводимых, восстанавливаемых и усиливаемых строительных конструкций наиболее полно учитывающих специфику воздействий на них, свойства материалов, специфику конструктивных решений и другие особенности».

Практическая ценность и реализация результатов исследований заключается в возможности изучать процессы изменения напряжений и деформаций в бетоне и арматуре колонн с течением времени, а также получать уточненные значения параметров ползучести и критической силы, предусмотренной нормативными документами, при различных схемах загружения с учетом нелинейной диаграммы мгновенного деформирования бетона в соответствии с *Eurocode* 2.

Практическая ценность выполненной работы состоит в уточнении феноменологических уравнений ползучести бетона в рамках объединенных уравнений пластичности и ползучести и получение новых моделей теории ползучести. Полученные результаты позволяют прогнозировать процессы длительного деформирования железобетонных элементов и рассчитывать сжатые железобетонные конструкции при высоких уровнях загружения. В частности, методика расчета условной критической силы с учетом мгновенной нелинейности и нелинейной ползучести бетона принята к использованию и применена проектным институтом ООО «Северная Столица» группы компаний К-ГРУПП при оценке несущей способности монолитных железобетонных колонн при проектировании административного здания в г. Мурманск. Научные результаты диссертации могут быть рекомендованы для дальнейших теоретических и экспериментальных исследований данного раздела теории железобетона.

Апробация работы.

Основные положения работы докладывались:

• на 60-й Международной науч.-техн. конф. молодых ученых. – СПбГАСУ, (Санкт-Петербург, 25 – 27 апреля 2007 г.);

• на 66-й науч. конф. проф., препод., науч. работн., инж. и асп. ун-та. – СПбГАСУ, (Санкт-Петербург, 3 – 5 февраля 2009 г.);

• на 67-й науч. конф. проф., препод., науч. работн., инж. и асп. ун-та. – СПбГАСУ, (Санкт-Петербург, 3 – 5 февраля 2010 г.);

• на 68-й науч. конф. проф., препод., науч. работн., инж. и асп. ун-та. – СПбГАСУ, (Санкт-Петербург, 2 – 4 февраля 2011 г.);

 на II Международном конгрессе студентов и молодых ученых (аспирантов, докторантов) «Актуальные проблемы современного строительства» (СПбГАСУ, Санкт-Петербург, 10 – 12 апреля 2013 г.).

Публикации.

Материалы диссертации опубликованы в 8 печатных работах общим объемом 4,115 п.л., лично автором – 3,545 п.л., в том числе 4 статьи опубликованы в изданиях, входящих в перечень ведущих рецензируемых научных журналов, утвержденный ВАК РФ.

Структура и объем работы.

Диссертация состоит из введения, четырех глав с выводами по каждой из них, общих выводов. Диссертация содержит 180 страниц машинописного текста, 24 таблицы, 24 рисунка, 16 приложений и список использованной литературы из 175 наименований работ отечественных и зарубежных авторов.

Во введении сформулирована проблема и обоснована актуальность

проводимых исследований, сформулированы цель, задачи, научная новизна и практическая значимость проводимых теоретических и экспериментальных исследований.

<u>В первой главе</u> раскрыта актуальность научных исследований: приведен обзор теорий ползучести бетона, проанализированы области их применения, показаны достоинства и выявлены существующие недостатки. Представлен обзор предшествующих исследований напряженно-деформированного состояния сжатых железобетонных элементов с учетом ползучести бетона. Рассмотрены экспериментально-теоретические исследования нелинейной диаграммы мгновенного деформирования бетона с ниспадающей ветвью.

<u>Во второй главе</u> для связи между мгновенными деформациями и напряжениями в бетоне использована нормируемая Eurocode 2 аналитическая зависимость; изложена процедура преобразования этой формулы в более удобный вид для практического применения при расчете железобетонных конструкций. Разработаны уточненные уравнения ползучести, новые учитывающие мгновенную нелинейность бетона. Исследовано напряженно-деформированное состояние сжатых железобетонных элементов, и получены выражения для определения напряжений И деформаций бетона И арматуры, а также характеристики ползучести бетона с учетом мгновенной нелинейности бетона.

<u>В третьей главе</u> изложена постановка и проведение экспериментальных исследований длительного загружения сжатых железобетонных элементов. Приведены результаты испытаний и их обработка: определены напряжения в арматуре и бетоне, получены величины характеристики ползучести бетона, учитывающие мгновенные и длительные нелинейные деформации бетона при различных вариантах аппроксимации зависимости мгновенных деформаций от напряжений.

<u>Четвертая глава</u> посвящена уточнению значения нормативной условной критической силы. Приведены расчеты условной критической силы по нормативной методике и на основе предложений автора с приближенным учетом мгновенной и длительной нелинейности деформирования бетона.

13

ГЛАВА 1. МЕТОДЫ РАСЧЕТА СЖАТЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ С УЧЕТОМ НЕЛИНЕЙНОЙ ПОЛЗУЧЕСТИ

1. 1. Расчет сжатых железобетонных элементов при длительном загружении

Исследованию изменения во времени напряженно-деформированного железобетонных состояния центрально элементов, армированных сжатых продольными стальными стержнями и поперечными хомутами, к которым приложена продольная центральная сжимающая сила Р постоянной величины, с посвящены работы П. И., учетом ползучести бетона Васильева Александровского С. В., Арутюняна Н. Х., Бондаренко В. М., Карпенко Н. И., Прокоповича И. Е., Галустова К. З., Ржаницына А. Р., Лившица Я. Д., Манукяна М. М., Улицкого И. И., Голышева А. Б. и других ученых. Эти исследования основаны на допущение о том, что арматура не обладает ползучестью и работает упруго, подчиняясь линейному закону Гука

$$\varepsilon_{a} = \frac{\sigma_{a}}{E_{a}}, \qquad (1.1.1)$$

где *E*_a – модуль упругости арматуры; ε_a – деформация арматуры.

Для железобетонных колонн справедливо уравнение равновесия:

$$F_{\mathbf{5}} \cdot \boldsymbol{\sigma}_{\mathbf{5}} + F_{\mathbf{a}} \cdot \boldsymbol{\sigma}_{\mathbf{a}} = \boldsymbol{P}, \tag{1.1.2}$$

где σ_6 и σ_a – напряжения в бетоне и упругой арматуре; F_6 – площадь поперечного сечения бетона; F_a – суммарная площадь поперечного сечения продольной арматуры.

Деформации бетона и арматуры в соответствии с гипотезой о совместности деформаций принимаются равными, тогда уравнение (1.1.2) примет вид:

$$F_{\delta} \cdot \sigma_{\delta} + F_{a} \cdot E_{a} \cdot \varepsilon = P, \qquad (1.1.3)$$

где є – продольные деформации колонны.

Дальнейшее решение задачи сводится к системе уравнений, состоящей из алгебраического уравнения (1.1.3) и основного уравнения одной из теорий ползучести бетона.

В исследованиях Арутюняна Н. Х. [6], основанных на линейной теории упруго-ползучего тела, полная деформация бетона выражается уравнением

$$\varepsilon(t) = \frac{\sigma_{\delta}(t)}{E(t)} - \int_{\tau_{1}}^{t} \sigma_{\delta}(\tau) \frac{\partial}{\partial \tau} \left[\frac{1}{E(\tau)} + C(t,\tau) \right] d\tau.$$
(1.1.4)

При использовании зависимостей $C(t, \tau) = \Theta(\tau) [1 - e^{-\gamma(t-\tau)}]$, $E(\tau) = E_0 (1 - e^{-\alpha \tau})$,

функции влияния $\Phi[\xi,p]$ и функции старения в виде $\theta(\tau) = C_0 + \frac{A}{\tau}$, Арутюнян определил напряжения в бетоне для постоянного модуля мгновенной деформации

$$\sigma_{5}(t) = \sigma_{5}(\tau_{1}) \left\{ 1 - \frac{\mu \gamma E_{a}}{1 + \mu m} \left(C_{0} + \frac{A_{1}}{\tau_{1}} \right) \frac{e^{r\tau_{1}} \tau_{1}^{p}}{r^{1-p}} \left[\Phi(rt, p) - \Phi(r\tau_{1}, p) \right] \right\}, \quad (1.1.5)$$

где $\Phi(rt,p) - \Phi(r\tau_1,p) = \int_{0}^{rt} \frac{e^{-\tau}}{\tau^p} d\tau - \int_{0}^{r\tau_1} \frac{e^{-\tau}}{\tau^p} d\tau$; *р* и *r* – параметры, которые характери-

зуют интенсивность процесса нарастания деформации ползучести бетона в железобетонном элементе, равные

$$p = \frac{\gamma \mu E_{a} A_{l}}{1 + \mu m};$$
 $r = \gamma \left(1 + \frac{\mu E_{a} C_{0}}{1 + \mu m}\right).$ (1.1.6)

Для переменного модуля мгновенной деформации Арутюняном предложено два варианта формул – определение напряжений с избытком $\overline{\sigma}_{6}(t)$ или с недостатком $\widetilde{\sigma}_{6}(t)$:

$$\overline{\sigma}_{5}(t) = \sigma_{5}(\tau_{1}) \left\{ 1 - \frac{\mu \gamma E_{a}}{1 + \mu m(\infty)} \left(C_{0} + \frac{A_{1}}{\tau_{1}} \right) \frac{e^{r\tau_{1}} \tau_{1}^{p}}{r^{1-p}} \left[\Phi(rt,p) - \Phi(r\tau_{1},p) \right] \right\}, \quad (1.1.7)$$

$$\widetilde{\sigma}_{\delta}(t) = \sigma_{\delta}(\tau_1) \left\{ 1 - \frac{\mu \gamma E_a}{1 + \mu m} \left(C_0 + \frac{A_1}{\tau_1} \right) \frac{e^{r\tau_1} \tau_1^p}{r^{1-p}} \left[\Phi(rt, p) - \Phi(r\tau_1, p) \right] \right\}, \quad (1.1.8)$$

где коэффициенты *p* и *r* определяются по отношениям (1.1.6).

Прокопович И. Е. [106], развивая исследования Арутюняна Н. Х., вывел формулу для определения усилия в бетоне $V_b^*(t)$ в виде:

$$V_{5}^{*}(t) = P(t) - V_{a}(\tau_{1}) \left\{ 1 + \frac{\gamma \Xi(\tau_{1})}{1 + \mu m(\tau_{1})} e^{r_{a}(z + \tau_{1})} \frac{(z + \tau_{1})^{p_{a}}}{r_{a}^{1 - p_{a}}} \times, \\ \times \left[\Phi[r_{a}(z + t), p_{a}] - \Phi[r_{a}(z + \tau_{1}), p_{a}] \right] \right\},$$
(1.1.9)

где $r_{\rm a} = \gamma \left[1 + \frac{\mu C_0 E_{\rm a}}{1 + \mu m(\tau_1)} \right]; \quad p_{\rm a} = \frac{\gamma \mu A E_{\rm a}}{1 + \mu m(\tau_1)}; \quad \Phi(\xi, p_{\rm a}) - \text{ неполные гамма-функции;}$

 $\Xi(\tau_1)$ – характеристика ползучести; $m(\tau) = \frac{E_a}{E(\tau)}; \mu$ – коэффициент армирования,

равный $\mu = \frac{F_a}{F_6}$; γ , ϵ , A, C_0 , – постоянные коэффициенты, подбираемые по экспериментальным кривым.

В нелинейной двухкомпонентной теории ползучести Галустова К. З. [27] деформации ползучести состоят из двух частей: обратимой и необратимой. Обратимая часть деформаций ползучести зависит от возраста бетона и линейно связана с напряжениями, а необратимая часть – не зависит от возраста бетона и связана с напряжениями нелинейно. Основное уравнение нелинейной теории ползучести имеет вид

$$\varepsilon(t) = \frac{\sigma_6(t)}{E(t)} + \frac{R(t)}{E(t)} \int_{\tau_1}^t s(\tau) K(t, \tau) d\tau + \int_0^{\max S} f(s) F[T(s, t)] ds, \qquad (1.1.10)$$

где R – призменная прочность; max S – максимальное значение уровня напряжения S, достигнутое к моменту времени t; T – суммарная длительность действия уровня напряжения к моменту времени t; $K(t,\tau)$ – ядро уравнения, характеризующее деформацию ползучести и включающее необратимую деформацию второго рода.

Применительно к бетону старого возраста, когда рост модуля упругомгновенной деформации незначителен (постоянный), характер изменения напряжений в бетоне, получаемый из уравнения (1.1.10) записывается в виде

$$\sigma_{\delta}(t) = \sigma_{\delta y} - \lambda \int_{0}^{t} \sigma_{\delta}(\tau) e^{-\gamma(t-\tau)} d\tau - \lambda_{1} \int_{0}^{\max \sigma} \sigma_{\delta}(t) F[T(\sigma_{\delta}, t)] d\sigma, \qquad (1.1.11)$$

где $\sigma_{\text{бу}}$ – мгновенно-упругие деформации бетона, равные

$$\sigma_{\rm dy} = \frac{P}{F_{\rm d}(1+m\mu)}; \tag{1.1.12}$$

 C_0 – предельная величина меры ползучести; λ , γ , *m* и μ – коэффициенты, равные

$$\lambda = \frac{\mu \gamma E_a C_0}{1 + m\mu}, \quad \lambda_1 = \frac{\mu E_a}{1 + m\mu}, \quad \lambda = \lambda_1 \gamma C_0, \quad m = \frac{E_a}{E_6}, \quad \mu = \frac{F_a}{F_6}.$$

Щелкуновым В. Г. [140] в нелинейной теории старения для установления связи между напряжениями и деформациями, которые содержат обратимые деформации ползучести, предложена формула:

$$\varepsilon(t) = \frac{\sigma_0}{E_0} - \frac{1}{E_0} \int_0^t \frac{df[\sigma(\tau)]}{d\tau} \phi(\tau) d\tau + \int_0^t \frac{d\sigma(\tau)}{d\tau} \frac{1}{E(\tau)} \phi_0(t,\tau) d\tau + \int_0^t \frac{d\sigma(\tau)}{d\tau} \frac{1}{E(\tau)} d\tau + \frac{f[\sigma(t)]}{E_0} \phi(t), \qquad (1.1.13)$$

где $f[\sigma(\tau)]$ и $f[\sigma(t)] - функция напряжений в любой момент времени <math>\tau$ и в момент наблюдения t; $\phi(t)$ и $\phi(\tau)$ – характеристики ползучести бетона при времени t и τ ; E_0 и $E(\tau)$ – модули упругости бетона в начальный момент и в любой момент τ ; $\phi_0(t,\tau)$ – характеристики обратимой части деформаций ползучести.

Для упрощения математических преобразований Щелкунов ввел допущение о том, что обратимые деформации ползучести протекают мгновенно, тогда характеристика ползучести $\varphi_0(t,\tau)$ определяется выражением

$$\varphi_0(t,\tau) = \varphi_0(\tau) = \varphi_0 \frac{\varphi(\tau)}{m}, \qquad (1.1.14)$$

где ϕ_0 – предельное значение характеристики обратимой части деформаций ползучести бетона, загруженного в момент $\tau = 0$ и разгруженного при $t \to \infty$; *m* – предельное значение характеристики ползучести бетона при сжатии.

Формула (1.1.13) с учетом зависимости (1.1.14) примет вид

$$\varepsilon(t) = \frac{\sigma_0}{E_0} - \frac{1}{E_0} \int_0^t \frac{df[\sigma(\tau)]}{d\tau} \phi(\tau) d\tau + \frac{\phi_0}{m} \int_0^t \frac{d\sigma(\tau)}{d\tau} \frac{1}{E(\tau)} \phi(\tau) d\tau + \int_0^t \frac{d\sigma(\tau)}{d\tau} \frac{1}{E(\tau)} d\tau + \frac{f[\sigma(t)]}{E_0} \phi(t),$$
(1.1.15)

где для функции $f(\sigma_6)$ Щелкунов использовал уравнение Яценко Е. А. [143] $f(\sigma_6) = k [\sigma_6(t) - \sigma_{rp}] + \sigma_{rp}.$

Полученный закон изменения напряжений в бетоне на основе уравнения (1.1.15) имеет вид

$$\sigma_{\sigma}(t) = \frac{\sigma_{rp}(k-1)}{k} + \left[\sigma_{0} - \frac{\sigma_{rp}(k-1)}{k}\right] e^{-k\frac{m}{\varphi_{0}}\ln[1+\xi\varphi(t)]}, \qquad (1.1.16)$$

где μ – коэффициента армирования; *n* – отношение модуля упругости арматуры к модулю упругости бетона; ξ – опытный коэффициент, равный $\xi = \frac{m}{\varphi_0} \cdot \frac{\mu n}{1 + \mu n}$.

Улицкий И. И. [134, 135] в рамках нелинейной теории старения бетона, основное уравнение которой в дифференциальной форме записывается в виде

$$\dot{\varepsilon}(t) = \frac{1}{E(t)} \dot{\sigma}_{\delta}(t) + \frac{1}{E_0} \dot{\phi}_t f[\sigma_{\delta}(t)], \qquad (1.1.17)$$

применив для функции напряжения зависимость $f[\sigma_6(t)] = \sigma_6 + \beta \sigma_6^2$, предложил формулу для определения напряжений бетона $\sigma_6(t)$ с учетом нелинейности деформаций ползучести:

$$\sigma_{\delta}(t) = \sigma_{\delta 0} \frac{e^{-\xi \varphi_t}}{1 + \beta \sigma_{b 0} (1 - e^{-\xi \varphi_t})}, \qquad (1.1.18)$$

где β – коэффициент, называемый параметром нелинейной ползучести.

При подстановке β = 0 в уравнение (1.1.18), получается решение линейной задачи

$$\sigma_{\delta} = \sigma_{\delta 0} e^{-\xi \varphi_t} \,. \tag{1.1.19}$$

где σ₆₀ – начальное напряжение в бетоне; φ_t – характеристика ползучести; ξ – коэффициент, учитывающий рост модуля упругости бетона *E*₆, равный

$$\xi = n\mu \left[1 - \frac{n\mu}{\delta\varphi_t} \ln \frac{1 + n\mu + \delta\varphi_t}{1 + n\mu} \right], \qquad (1.1.20)$$

где δ – параметр, не зависящий то времени; μ – коэффициент армирования; *E*₀ – модуль упругости бетона.

В результате проведённых исследований напряженного состояния центрально-сжатых железобетонных элементов Манукяном М. М. [87] была получена формула для определения напряжений в бетоне:

$$\sigma_{\delta}(t) = y_1 \frac{1 - \alpha_1 e^{-A\beta\gamma(y_1 - y_2)(t - \tau_1)}}{1 - \alpha_2 e^{-A\beta\gamma(y_1 - y_2)(t - \tau_1)}},$$
(1.1.21)

где τ_1 – возраст бетона в момент загружения;

$$\sigma_{5}(\tau_{1}) = \frac{P}{F_{5}(1+m_{0}\mu)}; \quad m_{0} = \frac{E_{a}}{E_{0}}; \quad \mu = \frac{F_{a}}{F_{5}}; \quad y_{1} = \frac{-(A+1)+\sqrt{(A+1)^{2}+4A\beta\sigma_{5}(\tau_{1})}}{2A\beta};$$
$$y_{2} = \frac{-(A+1)-\sqrt{(A+1)^{2}+4A\beta\sigma_{5}(\tau_{1})}}{2A\beta}; \quad \alpha_{2} = \frac{\sigma_{5}(\tau_{1})-y_{1}}{\sigma_{5}(\tau_{1})-y_{2}}; \quad \alpha_{1} = \frac{y_{2}}{y_{1}}\alpha_{2}; \quad A = \frac{\mu E_{a}C_{0}}{1+m_{0}\mu}.$$

Как указывает сам автор его исследования основаны на нелинейной теории упруго-ползучего тела, однако, при интегрировании дифференциальных уравнений и получении формулы (1.1.21) Манукян принимает модуль мгновенной деформации бетона постоянной величиной E_0 и функцию старения заменяет ее предельным значением C_0 , таким образом можно сделать вывод, что применялась нелинейная теория упругой наследственности бетона.

Васильевым П. И. [21] при нелинейной связи между напряжениями и деформациями ползучести без учета старения получено уравнение

$$\sigma_{5}(t) = \sigma_{0}e^{-\frac{E_{a}\mu k}{n\mu+1}F(t)} \sqrt{\frac{k}{k + A_{1}\sigma_{0}^{3}\left(1 - e^{-\frac{3E_{a}\mu k}{n\mu+1}F(t)}\right)}},$$
(1.1.22)

где при подстановке $A_1 = 0$ получаем решение задачи для линейной ползучести:

$$\sigma_{\delta}(t) = \sigma_0 e^{\frac{E_a \mu k}{n\mu + 1}F(t)}, \qquad (1.1.23)$$

где $\sigma_0 = \frac{P}{F_6 + F_a \frac{E_a}{E}};$ F(t) – функция, зависящая от длительности действия

напряжения.

Анализ уравнений ползучести (1.1.4), (1.1.10), (1.1.13), (1.1.15) и (1.1.17) показал, что первые слагаемые правых частей выражений описывают мгновенноупругие деформации бетона, подчиняющееся линейному закону Гука. Пропорциональность между мгновенными деформациями и напряжениями существует при очень малых уровнях загружения – не более 20 % от призменной прочности бетона [116], поэтому при высоких уровнях загружения бетона, приближающихся к пределу прочности, существующие уравнения ползучести показывают существенное различие теории и эксперимента. Следовательно, приведенные формулы (1.1.5), (1.1.7) – (1.1.9), (1.1.11), (1.1.16), (1.1.18), (1.1.19) и (1.1.21) – (1.1.23), полученные на основе этих уравнений ползучести, не позволяют правильно определять процессы деформирования бетона при высоких уровнях загружения, так как не учитывают мгновенную нелинейность бетона, при этом некоторые из них отличаются особой сложностью математических вычислений.

В расчетах железобетонных конструкций ползучесть бетона учитывается либо мерой ползучести

$$C(t,\tau_i) = \frac{\varepsilon_n(t,\tau_i)}{\sigma(\tau_i)}, \qquad (1.1.24)$$

либо характеристикой ползучести

$$\varphi(t,\tau_i) = \frac{\varepsilon_{\pi}(t,\tau_i)}{\varepsilon_{y}(\tau_i)}.$$
(1.1.25)

Литературный анализ показал, что предельные величины $C(t,\tau_i)$ и $\phi(t,\tau_i)$ получены с применением закона Гука для мгновенных деформаций бетона.

Для аппроксимации кривых изменения во времени меры ползучести, характеристики ползучести и деформаций ползучести отечественными и зарубежными учеными предложены разные зависимости, некоторые из них приведены в табл. 1.1.1.

Таблица 1.1.1

Формулы, аппроксимирующие изменения меры ползучести, характеристики ползучести и деформаций ползучести во времени

№ П/П	Автор	Функция	Примечание
1	Арутюнян Н. Х.	$C(t,\tau) = \left(C + A_1\right) \left[1 - e^{-\gamma(t-\tau)}\right]$	 τ – возраст бетона;
	[6]	$C(l,t) = \left(C_0 + \frac{\tau}{\tau}\right) \left[1 - e^{-\tau} \right]$	<i>А</i> , ү – опытные константы
2	Васильев П. И.	r(t)	$f'(0, \tau) = \frac{\partial c}{\partial c}$
	[22]	$C(t,\tau) = \int_{\tau} C'(\theta,\tau) d\theta$	$\int (0 - \mathbf{t}) = \frac{1}{\partial t} \operatorname{пpu} \mathbf{t} \to \infty$

3	МакГенри	$C(t,\tau) = \alpha (1-e^{-rt}) +$	$\alpha, \beta, r, p, K, m$ – параметры,		
	(McHenry	$+ Be^{-pK}(1-e^{-mt})$	определяемые из опыта		
	Douglas) [158]	pe (i e)			
4	Прокопович И. Е.	$C(t,\tau) = \left(C_{+} + \frac{A_{-}}{A_{-}}\right) \left[1 - e^{-\gamma(t-\tau)}\right]$	τ – возраст бетона;		
	[108, 109]	$(t, t) = \begin{pmatrix} 0 & 1 \\ 0 & 2 + \tau \end{pmatrix}^{t}$	<i>А</i> , <i>ү</i> , <i>г</i> – опытные константы		
5	Яшин А. В.	$C(t,\tau) = \left(1 + \frac{K}{K}\right) \left\{ B \left[1 - e^{-\gamma_1(t-\tau)} \right] + \right\}$	$A_1, B_1, B_2, \gamma_1, \gamma_2$ и γ_3 – опытные		
	[148]	(τ, τ) (τ, τ) (τ, τ)	коэффициенты		
		+ $B_2 \left[1 - e^{-\gamma_2(t-\tau)} \right] + A_1 \left[e^{-\gamma_3 t} - e^{-\gamma_3 \tau} \right]$			
6	Александ-	$C(t,\tau) = y_t(\tau) - y_t(t) \left(1 - A_2 e^{-\gamma \tau}\right)$	$\psi(\tau), \Delta(\tau) - функции, быстро$		
	ровский С. В.	$C(l, t) = \Psi(t) - \Psi(l) \left(\frac{1}{1 - A_2 e^{-\gamma t}} \right)^{\star}$	убывающие с ростом τ;		
	[4]	$\times e^{-\gamma(t-\tau)} + \Delta(\tau) \left[1 - e^{-\alpha(t-\tau)}\right]$	γ, α, A ₂ – коэффициенты		
7	Шенк Я. Р. [166]	$C = K\sqrt[q]{t}$	<i>q</i> и <i>K</i> – постоянные		
	(Shank Jacob R.)		коэффициенты		
8	Столяров Я. В.	$C = a + b \cdot lgt$	<i>а</i> и <i>b</i> – опытные коэффициенты;		
	[120, 123]		С – мера ползучести		
9	Дишингер [152,	$\varphi_t = m \left(1 - e^{-t} \right)$	<i>m</i> – опытный коэффициент		
	153] (Dischinger)				
10	Улицкий И. И.	$\varphi_t = \varphi_\infty \left(1 - e^{-bt} \right)$	ϕ_{∞} – предельная величина ϕ_t ;		
	[132]		<i>b</i> – опытный коэффициент		
11	Штрауб [170]	$\varepsilon_{\pi} = K \cdot \sigma_{\delta}^{p} \cdot t^{q}$	<i>К</i> , <i>р</i> и <i>q</i> – опытные		
	(Straub Lorenz G.)		коэффициенты		
12	Томас [172]	$\varepsilon_{\pi} = C_2 \sigma_{\delta} \times$	<i>С</i> ₂ , <i>А</i> , <i>а</i> , <i>х</i> – постоянные коэффи-		
	(Thomas F. G.)	$\times \left[1 - e^{-A\left((t+a)^x - a^x\right)}\right]$	циенты, учитывающие свойства		
			бетона		
13	Фрейденталь	$\varepsilon = \frac{at}{\sigma}$	<i>а</i> , <i>b</i> – коэффициенты, подби-		
	[132] (Freudenthal	$v_{n} = 1 + bt 10^{6}$	раемые по кривым ползучести		
	Alfred M.)				
14	Лорман [158]	$\epsilon = \frac{mt}{\sigma}$	<i>n</i> – опытный коэффициент, изме-		
	(Lorman	n+t	ряемый в днях; <i>т</i> – коэффициент		
	William R.)		ползучести		
15	Pocc [162]	$\varepsilon = \frac{t}{1}$	<i>а</i> и <i>b</i> – опытные коэффициенты		
	(Ross A. D.)	a+bt			

16	Качанов Л. М.	$\varepsilon_{\pi} = \sigma^m \cdot \Omega_1(t)$	Ω ₁ (<i>t</i>) – монотонная возрастающая
	[74]		функция;
			<i>m</i> – постоянный коэффициент
17	Дютрон	n^3	<i>n</i> – удельная ползучесть после <i>t</i>
	(Dutron R.)	$t = K \sqrt{\frac{100 - n}{100 - n}}$	дней загружения, выраженная в
	[155]		процентах от предельной ползу-
			чести; К – коэффициент, зави-
			сящий от условий твердения
			бетона, возраста к моменту
			нагружения и других факторов
18	Рафаэль Дж. М.	$\varepsilon_{\pi} = f(K) \cdot log_{e}(t+1)$	<i>f</i> (<i>K</i>) – величина, значение
	(Raphael		которой зависит от возраста
	Jerome M.) [161]		бетона К в момент загружения;
19	Шейкин А. Е.	$s = -\frac{\sigma_{\text{гель}}}{(1-e^{-\beta t})}$	σ _{гель} – напряжения в гелевой
	[139]	$e_{\pi} - \frac{1}{\alpha_0 \beta} (1 - e_{\pi})$	составляющей цементного камня
			в момент приложения нагрузки;
			α ₀ – параметр, отражающий
			внутреннюю вязкость геля;
			β – постоянная, зависящая от
			качества цемента
20	Эрсен С. З.	$\left[\alpha \left[1 - \left(\frac{K}{t} \right)^{\beta} \right] \right]$	α, β – опытные коэффициенты;
	(Ersen Cevdet Z.)	$\varepsilon_{\rm n} = \varepsilon_{\rm y} \left\{ e^{\left[\left(\left(r \right) \right] \right]} - 1 \right\}$	К – возраст бетона в момент
	[157]		приложения нагрузки
21	Рутледж	$T(1-g-u)^{\frac{T}{s+pT}}$	<i>Т</i> – продолжительность приложе-
	(Rutledge S. E.),	$\varepsilon_{\pi} = \frac{(a + bT)}{a + bT}$	ния нагрузки; <i>g</i> , <i>u</i> , <i>a</i> , <i>b</i> , <i>s</i> , <i>p</i> –
	Невилль [163]		постоянные коэффициенты
	(Neville A. M.)		

Как видно из приведенного обзора, все существующие уравнения деформаций ползучести носят эмпирический характер и удовлетворяют определенным экспериментальным наблюдениям. Учесть многообразие факторов, от которых зависит явление ползучести невозможно, поэтому входящие в уравнения ползучести бетона эмпирические коэффициенты не имеют физического смысла.

22

Предельная величина ϕ_{∞} в российских нормах СП 52–101–2003 [118], СП63.13330.2012 [119] и европейских нормах – *Eurocode* 2 [156] нормируется и имеет название коэффициент ползучести (*creep coefficient*).

Между характеристикой ползучести $\phi(t,\tau_i)$ и мерой ползучести $C(t,\tau_i)$ существует математическая связь:

$$C(t,\tau_i) = \frac{\varphi(t,\tau_i)}{E(\tau_i)}.$$
(1.1.26)

Приравнивая правые части соотношений (1.1.24) и (1.1.26), получаем формулу для определения деформаций ползучести:

$$\varepsilon_{\pi} = \frac{\varphi(t, \tau_i)}{E(\tau_i)} \cdot \sigma(\tau_i), \qquad (1.1.27)$$

где $E(\tau_i)$ – модуль упругости бетона.

Формула (1.1.27), полученная при использовании закона Гука, внедрена в *Eurocode* 2 [156] и применяется в расчетах железобетонных конструкциях при уровнях загружения $\sigma_6 < 0,45R$. Если уровень загружения превышает 0,45R, то ползучесть становится нелинейной, в этом случае коэффициент ползучести определяется по формуле:

$$\varphi_k(\infty, \tau_i) = \varphi(\infty, \tau_i) e^{1.5\left(\frac{\sigma_6}{R_b} - 0.45\right)}, \qquad (1.1.28)$$

где $\varphi_k(t,\tau_i)$ называется нелинейным коэффициентом ползучести.

Экспериментально логичнее определить характеристику ползучести $\phi(t,\tau_i)$, нежели меру ползучести $C(t,\tau_i)$, в силу того, что в обработке результатов опыта не применяются дополнительные расчеты, связанные с определением напряжения бетона σ_6 , а численные величины деформаций є зависят от качества проведения исследования и точности испытательного оборудования.

В связи с вышеизложенным необходимо дальнейшее проведение экспериментальных и теоретических исследований в теории железобетона по следующим направлениям:

 получение уточненных уравнений в нелинейных теориях ползучести бетона, которые учитывают нелинейную зависимость между мгновенными деформациями бетона и напряжениями; - выявление влияния совместного учета мгновенной нелинейности и нелинейной ползучести бетона на изменение характеристики ползучести бетона, в том числе на изменение напряжений и деформаций в бетоне и арматуре;

- прогнозирование длительной прочности железобетонных элементов и совершенствование нормативной формулы условной критической силы с учетом мгновенных нелинейных деформаций бетона.

1. 2. Феноменологические теории ползучести бетона применяемые в расчетах железобетонных конструкций

В настоящее время линейные и нелинейные теории ползучести бетона являются феноменологическими и классифицируются следующим образом: теория упруго-ползучего тела; теория упругой наследственности; теория старения, в том числе модифицированная теория старения. В их основе лежит принцип суперпозиции, согласно которому полная деформация бетона є состоит из суммы мгновенной деформации ε_{M} и деформации ползучести ε_{Π} в данный момент времени

$$\varepsilon = \varepsilon_{\rm M} + \varepsilon_{\rm II}. \tag{1.2.1}$$

Из гипотезы следует, что деформации ε_{M} и ε_{n} рассматриваются независимо друг от друга, но возникают под действием одного и того же напряжения σ_{δ} .

В простейшем случае, мгновенные деформации бетона принимаются упругими вплоть до разрушения и описываются линейным законом Гука

$$\varepsilon_{y} = \frac{\sigma_{6}}{E_{0}}, \qquad (1.2.2)$$

где *E*₀ – постоянный модуль упругости.

В линейной теории ползучести приняты следующие допущения [4, 21, 88, 98, 134]:

1. Бетон является однородным изотропным материалом.

2. Связь между напряжениями и мгновенно-упругими деформациями устанавливается линейным законом Гука.

24

3. Между напряжениями и деформациями ползучести также существует линейная зависимость.

4. Для деформаций ползучести и мгновенно-упругих деформаций действителен принцип наложения: суммарная деформация ползучести при переменном во времени напряжении определяется как сумма деформаций ползучести, вызванных соответствующими приращениями напряжений. Считают, что величина деформации ползучести, вызванная некоторым приращением нагрузки, зависит от величины и длительности действия этого приращения, но не зависит от величины и длительности действия остальных приращений [106].

5. Ползучесть при растяжении протекает так же, как и при сжатии.

Уравнение линейной теории ползучести записывается в виде [6, 81]:

$$\varepsilon(t) = \frac{\sigma_{6}(\tau_{1})}{E(\tau_{1})} + \sigma_{6}(\tau_{1})C(t,\tau_{1}) + \int_{\tau_{1}}^{t} \frac{d\sigma_{6}(\tau)}{d\tau} \left(\frac{1}{E(\tau)} + C(t,\tau)\right) d\tau, \qquad (1.2.3)$$

где $E(\tau)$ – модуль упругости в возрасте τ ; $C(t,\tau)$ – мера ползучести бетона.

В уравнении (1.2.3) первое слагаемое правой части описывает упругую мгновенную деформацию в момент времени τ_1 , второе слагаемое – деформацию ползучести, которая возникает в момент времени t от длительного действия начального напряжения $\sigma_6(\tau_1)$. Подынтегральное выражение является суммой мгновенной деформации и деформации ползучести к моменту времени t, вызываемых дифференциалом напряжения $\frac{d\sigma_6(\tau)}{d\tau}d\tau$ и добавляющимся к начальному напряжению в произвольный момент времени τ [81].

В результате экспериментальных исследований Александровского С. В. [1], Катина Н. И. [73], Мельника А. Р. [91], Попковой О. М. [102] было установлено, что деформации ползучести бетона нелинейно зависят от действующих напряжений даже при малых величинах этих напряжений. В частности, Попкова О. М. обнаружила нелинейность деформаций ползучести уже при уровне напряжений $\sigma_6 = 0,09R_{np}$, причем эта нелинейность наблюдалась в бетоне всех возрастов к моменту загружения.

Нелинейная теория ползучести бетона построена на всех допущениях из линейной теории, за исключением допущения \mathbb{N}° 3, вместо которого связь между напряжениями и деформациями ползучести принимается нелинейной и данное допущение никак не связано с принятой зависимостью между мгновенными деформациями в бетоне ε_{M} и напряжениями σ_{6} .

В нелинейной теории ползучести вводится гипотеза об афинном подобии кривых ползучести при различных начальных напряжениях. Это означает, что любая кривая ползучести бетона может быть получена из единичной кривой ползучести путем умножения ординат последней на множитель $f(\sigma_6)$, который называется нелинейной функцией напряжения. Математически данное допущение записывается в виде формул:

$$\varepsilon_{\Pi}(t) = f(\sigma_{\delta}) \cdot C(t, \tau); \qquad (1.2.4)$$

$$\varepsilon_{\pi}(t) = f(\sigma_{\delta}) \cdot \frac{\varphi(t,\tau)}{E(\tau)}, \qquad (1.2.5)$$

где $f(\sigma_6)$ – нелинейная функция напряжения.

Общее уравнение нелинейной теории ползучести записывается в виде:

$$\varepsilon(t) = \frac{\sigma(\tau_1)}{E(\tau_1)} + f(\sigma_6)C(t,\tau_1) + \int_{\tau_1}^t \left(\frac{d\sigma(\tau)}{d\tau E(\tau)} + \frac{df(\sigma_6)}{d\tau}C(t,\tau)\right)d\tau, \qquad (1.2.6)$$

где второй член подынтегрального выражения представляет деформацию нелинейной ползучести к моменту времени *t*, вызываемую добавкой напряжения в момент времени τ [81]. Остальные обозначения приняты как в уравнении (1.2.3).

Граница между областями линейной и нелинейной ползучестью $\eta = \frac{\sigma_6(t)}{R}$ находится в широких пределах и в значительной степени зависит от прочности бетона в момент загружения и вида напряженного состояния (растяжение, сжатие и т. д.). При сжатии Улицкий И. И. [134, 135] условно определил указанную границу в интервале $\eta = 0.3R_{\kappa}...0.6R_{\kappa}$ (R_{κ} – кубиковая прочность бетона), Лившиц Я. Д. [81] принимал $\eta = 0.4...0.5$ предела прочности бетона, Арутюнян Н. Х. [6] и Мельник Р. А. [91] в целях упрощения принимали уровень $\eta = 0.5R_{\kappa}$.

В результате своих экспериментальных исследований, Яценко Е. А. [146] считал возможным коэффициент η выражать формулой:

$$\eta = \frac{0.7\tau}{15+\tau},$$

где т – возраст бетона в момент загружения.

В частности, для возраста бетона 14 сут. $\eta(14) = \frac{0,7 \cdot 14}{15 + 14} = 0,34.$

В *Eurocode* 2 ч. 1-1 п. 3.1.4(4) граница между областями линейной и нелинейной ползучести соответствует уровню загружения η = 0,45 [156].

Учет нелинейной зависимости между деформациями ползучести и напряжениями осуществляется путем введения функции $f(\sigma_6)$ в уравнения ползучести. Некоторые выражения для функции $f(\sigma_6)$ сведены в табл. 1.2.1.

Таблица 1.2.1

№ п/п	Автор	Вид функции $f(\sigma_{\mathfrak{f}})$	Примечание
1	Александрян Р. А.	$\alpha\sigma_{d} + \beta\sigma_{d}^{m}$	α и β – коэффициенты,
	Арутюнян Н. Х.		причем $\alpha + \beta = 1$
	Манукян М. М. [5]		
2	Васильев П. И. [21]	$k\sigma_{6} + A_{1}\sigma_{6}^{n};$	<i>B</i> , <i>A</i> , <i>a</i> , <i>k</i> , <i>A</i> ₁ – параметры, подбираемые
		$B\sigma_{_{6}}+rac{A}{a}\left(e^{a\sigma_{_{6}}}-1 ight)$	по экспериментальным кривым
3	Яценко Е. А. [146]	$k[\sigma(t),\sigma]+\sigma$	σ _{гр} – граничное напряжение (момент
		$\left[\begin{array}{c} \kappa \\ \sigma_{\rm d}(t) - \sigma_{\rm rp} \end{array} \right] + \sigma_{\rm rp}$	перехода нелинейной ползучести в
			линейную), $\sigma_{rp} = 0,6R; k - коэффициент$
4	Бондаренко В. М. [17]	$\left[1 + \sigma_{\delta}\right]^{m_{k}}$	η_k, m_k – опытные параметры;
		$\sigma_{5}\left[1+\eta_{k}\left(\frac{1}{R}\right)\right]$	<i>R</i> – прочность бетона
5	Мельник Р. А. [90]	$\beta\sigma_{6}^{m}$	β, <i>m</i> – опытные коэффициенты
6	Арутюнян Н. Х. [6]	$\sigma_{_{\tilde{6}}} + \beta \sigma_{_{\tilde{6}}}^2$	β – параметр нелинейной ползучести
	Улицкий И. И. [134, 135]		
	Манукян М. М. [87]		

Нелинейные функции напряжения $f(\sigma_{\delta})$

Обширные исследования по определению значения коэффициента β , входящего в функцию $f(\sigma_6)$ и зависящего от величины $\frac{\sigma_6(t)}{R}$, проведены Улицким И. И. В бетоне, находящегося под нагрузкой, одновременно с ростом прочности меняются и напряжения во времени, поэтому коэффициент β является функцией времени $\beta = \beta(t)$, поведение которой зависит от закона изменения во времени отношения η . Для описания поведения функции β Улицким И. И. была предложена эмпирическая зависимость

$$\beta = \upsilon \left[\frac{\sigma_{\mathfrak{s}}(t)}{R} - \eta \right]^n,$$

где *v* – опытный параметр.

Для расчета железобетонных конструкций Улицким рекомендованы приближенные значения параметра β, представленные в табл. 1.2.2.

Таблица 1.2.2

Кубиковая прочность в	Уровень загружения <i>о</i> / <i>R</i>					
момент загружения, кгс/см ²	≤ 0,3	0,4	0,5	0,6	0,7	0,8
\leq 200	0	0,001	0,002	0,003	0,004	0,005
> 200	0	0	0,001	0,002	0,003	0,004

Значения параметров β

Примечание. Кубиковая прочность относится к кубу со стороной 20 см.

1.2.1. Теория упруго-ползучего тела

В литературе встречаются и другие названия теории упруго-ползучего тела: «наследственная теория старения», «теория Маслова–Арутюняна», «теория наследственных стареющих сред». Основы этой теории заложены Масловым Г. Н. [88], а ее полное построение, как законченной математической теории ползучести бетона, дано Арутюняном Н. Х. [6, 7]. Дальнейшее совершенствование теория упруго-ползучего тела получила в трудах Александровского С. В. [2 – 4], Бондаренко В. М. [16, 17], Васильева П. И. [20 – 23], Вульфсона С. 3. [24, 25], Галустова К. З. [26, 27], Гвоздева А. А. [28 – 30], Мельника Р. А. [89, 92, 93], Панарина Н. Я. [98], Прокоповича И. Е. [108, 109], Ржаницына А. Р. [112], Харлаба В. Д. [138], Яшина А. В. [147, 148] и других ученых.

Теория Маслова-Арутюняна является общей теорией ползучести бетона, которая учитывает старение бетона, наследственность бетона и частичную необратимость деформаций ползучести, которая связана со старением.

Основное уравнение линейной теории упруго-ползучего тела имеет вид:

$$\varepsilon(t) = \sigma(\tau_1)\delta(t,\tau_1) + \int_{\tau_1}^t \frac{d\sigma(\tau)}{d\tau}\delta(t,\tau)d\tau. \qquad (1.2.7)$$

где $\delta(t,\tau_1)$ в соответствии с исследованиями [6] является полной относительной деформацией бетона и равна

$$\delta(t,\tau_1) = \frac{1}{E(\tau_1)} + C(t,\tau), \qquad (1.2.8)$$

где $\frac{1}{E(\tau_1)}$ – мгновенно-упругая деформация; τ_1 – возраст бетона в момент загружения; t – момент времени, для которого определяется деформация; τ – момент приложения элементарного приращения напряжения.

Проинтегрировав по частям уравнение (1.2.7), его можно записать в виде

$$\varepsilon(t) = \frac{\sigma(t)}{E(t)} - \int_{\tau_1}^t \sigma(\tau) \frac{\partial}{\partial \tau} \delta(t, \tau) d\tau, \qquad (1.2.9)$$

то есть, полная продольная деформация $\varepsilon(t)$ состоит из упруго-мгновенной деформации $\frac{\sigma(t)}{E(t)}$ и деформации ползучести $\varepsilon_{\pi} = -\int_{\tau_1}^t \sigma(\tau) \frac{\partial}{\partial \tau} \delta(t, \tau) d\tau.$

Гвоздев А. А. [29, 30] основное уравнение теории упруго-ползучего тела записал в более общем виде:

$$\varepsilon(t) = \frac{\sigma(t)}{E(t)} - \int_{\tau_1}^t \frac{\sigma(\tau)}{E(\tau)} L(t, \tau) d\tau, \qquad (1.2.10)$$

где *L*(*t*, τ) – наследственная функция или функция влияния имевшихся прежде упругих деформаций на полную деформацию в момент времени *t*, равная

$$L(t,\tau) = E(\tau) \frac{\partial}{\partial \tau} \left[\frac{1}{E(\tau)} + C(t,\tau) \right].$$
(1.2.11)

Использование для меры ползучести $C(t,\tau)$ выражения

$$C(t,\tau) = \Theta(\tau) \left[1 - e^{-\gamma(t-\tau)} \right]$$
(1.2.12)

позволяет основное интегральное уравнение теории упруго-ползучего тела свести к линейному дифференциальному уравнению второго порядка [6]:

$$\ddot{\sigma}_{6} + \left[\gamma - \frac{\dot{E}}{E^{2}}\right]\dot{\sigma}_{6} + \gamma E\theta \dot{\sigma}_{6} = E(\ddot{\varepsilon} + \gamma \dot{\varepsilon}), \qquad (1.2.13)$$

где γ – коэффициент; E = E(t), $\theta = \theta(t) - функции одного и того же аргумента <math>t$.

Если рассматривается нелинейная ползучесть, то в уравнение (1.2.7) вводится нелинейная функция $f(\sigma_6)$. Полученное интегральное уравнение нелинейной ползучести при описании меры ползучести функцией (1.2.12) сводится к виду:

$$\ddot{\sigma}_{6} + \left[\gamma - \frac{\dot{E}}{E^{2}}\right]\dot{\sigma}_{6} + \gamma E\theta f'(\sigma_{6})\dot{\sigma}_{6} = E(\ddot{\epsilon} + \gamma\dot{\epsilon}).$$
(1.2.14)

При использовании теории упруго-ползучего тела в случае переменной нагрузки (с разгрузками) возможно несоответствие результатов теории и наблюдаемых результатов опыта, поэтому теория Маслова-Арутюняна неприменима при изучении знакопеременных загружений на бетон. Другой недостаток проявляется при использовании для функции старения θ(τ) выражения Арутюняна, который обращается в бесконечность при возрасте бетона равного нулю.

1.2.2. Теория упругой наследственности бетона

Теория упругой наследственности бетона является частным случаем теории упруго-ползучего тела. Она построена на работах Больцмана [149] и Вольтерра [173]. Дальнейшее развитие теория получила в трудах Ишлинского А. Ю. [67, 68], Малмейстера А. К. [86], Работнова Ю. Н. [110, 111], Ржаницына А. Р. [112], Розовского М. И. [113, 114], Прокоповича И. Е. и Зедгенидзе В. А. [109] и др.

В данной теории к общим допущениям, приведенным на стр. 24, дополнительно вводятся допущения о постоянстве во времени модуля упругости бетона ($E(\tau) = E(t) = E_0$) и функции старения ($\theta(\tau) = C_0$).

Основное уравнение линейной теории упругой наследственности, определяющее связь между напряжениями и деформациями бетона, с учетом принятых допущений и законом для меры ползучести $C(t,\tau) = C_0[1 - e^{-\gamma(t-\tau)}]$, имеет вид

$$\varepsilon(t) = \frac{\sigma(t)}{E_0} - \int_0^t \sigma(\tau) \frac{\partial}{\partial \tau} \left\{ \frac{1}{E_0} + C_0 \left[1 - e^{-\gamma(t-\tau)} \right] \right\} d\tau, \qquad (1.2.15)$$

интегрируя которое, получаем

$$\dot{\sigma}_{5} + \gamma (1 + E_0 C_0) \sigma_{5} = E_0 (\dot{\varepsilon} + \gamma \varepsilon). \qquad (1.2.16)$$

Из структуры уравнения (1.2.16) видно, что оно аналогично уравнению Кельвина в записи Ржаницына А. Р. [112]:

$$n\dot{\sigma} + \sigma = Hn\dot{\varepsilon} + E_0\varepsilon, \qquad (1.2.17)$$

где H – длительный модуль деформации, при этом $E_0 < H$; E_0 – мгновенный модуль деформации материала; n – время релаксации; $\dot{\epsilon}$ и $\dot{\sigma}$ – скорость деформирования и скорость изменения напряжений.

Применительно к бетону, подверженному уровням загружения $\sigma > 0,45R$, уравнение нелинейной ползучести теории упругой наследственности имеет вид

$$\dot{\sigma}_{6} + \gamma \sigma_{6} + \gamma E_{0}C_{0}f(\sigma_{6}) = E_{0}(\dot{\varepsilon} + \gamma \varepsilon). \qquad (1.2.18)$$

Существенным недостатком данной теории является полная обратимость деформаций в случае разгрузки бетона и неучет процесса старения бетона. Практическое применение данной теории оправдано в случаях нагружения бетона в старом возрасте, когда процесс старения считается законченным и свойства бетона уже не меняются [27, 80 – 82, 98].

Теория упругой наследственности инвариантна относительно начала координат, это означает, что кривая деформаций для любого момента загружения может быть получена путем поступательного смещения начальной кривой параллельно горизонтальной оси времени.

1.2.3. Теория старения бетона

Основоположниками теории старения бетона являются Уитни (*Charles S. Whitney*) [174] и Дишингер (*Fr. Dischinger*) [152, 153]. Значительное развитие эта теория получила в работах отечественных ученых Барашикова А. Я. [13, 14], Буданова Н. А. [18, 19], Гибшмана М. Е. [32, 33], Голышева А. Б. [34 – 38], Кизирия Г. В. [75], Лившица Я. Д. [80 – 82], Столярова Я. В. [120 – 123], Улицкого И. И. [127 – 136], Фрайфельда С. Е. [137], Щелкунова В. Г. [141], Яценко Е. А. [142 – 146] и др.

В основе этой теории, помимо допущений, приведенных на стр. 24, лежит гипотеза о «параллельности» кривых ползучести, которая справедлива для одного и того же бетона при действии одинакового напряжения. Выражение для характеристики ползучести $\varphi(t,\tau_i)$ представляется в виде разности двух функций

$$\varphi(t,\tau_i) = \varphi(t,\tau_0) - \varphi(\tau_i,\tau_0)$$

где τ_0 – момент загружения; *t* – продолжительность приложения нагрузки; $\phi(t,\tau_0)$ и $\phi(\tau_i,\tau_0)$ – характеристика ползучести бетона в моменты времени *t* и τ_i (*t* > τ_i).

Связь между напряжениями и полными деформациями бетона для линейной теории старения записывается в виде:

$$\varepsilon(t) = \frac{\sigma_0}{E_0} \left(1 + \varphi_t \right) + \int_0^t \frac{d\sigma(\tau)}{d\tau} \left[\frac{1}{E(\tau)} + \frac{\varphi_t - \varphi_\tau}{E_0} \right] d\tau, \qquad (1.2.19)$$

где σ_0 – напряжение в бетоне в момент загружения; E_0 – модуль упругости бетона в момент загружения; $E(\tau)$ – модуль упругости бетона в любой момент времени τ .

Уравнение (1.2.19) можно представить в дифференциальном виде:

$$\dot{\varepsilon} = \frac{1}{E(t)}\dot{\sigma} + \left(\frac{1}{E_0}\dot{\phi}_t\right)\sigma, \qquad (1.2.20)$$

где E(t) – переменный во времени модуль упругости бетона.

Выражение в скобках во втором слагаемом можно представить в виде коэффициента вязкости, который будет являться функцией времени:

$$\frac{1}{K(t)} = \frac{1}{E_0} \dot{\varphi}_t \,. \tag{1.2.21}$$

В простейшем случае оба коэффициента *E* и *K* принимаются постоянными, что позволяет записать уравнение (1.2.20) в виде:

$$\dot{\varepsilon} = \frac{1}{E_0} \dot{\sigma} + \frac{1}{K_0} \sigma. \tag{1.2.22}$$

что тождественно

$$\dot{\varepsilon} = \dot{\varepsilon}_{v} + \dot{\varepsilon}_{\pi}. \qquad (1.2.23)$$

Формула (1.2.22) описывает поведение реологической модели Максвелла.

При совершенствовании модели Максвелла, получившей развитие в теории старения бетона, ученые представляли коэффициенты E(t) и K(t) в виде неких функций.

В частности, для изменения модуля деформаций бетона *E*(*t*) во времени в литературе предложены следующие зависимости [6, 134]:

$$E(t) = E_0(1 + \delta \varphi_\tau), \qquad (1.2.24)$$

$$E(t) = \frac{E_0}{1 - k\phi_{\tau}},$$
 (1.2.25)

$$E(t) = E_0(1 - \beta e^{-\alpha t}),$$
 (1.2.26)

где E_0 – начальный модуль упругости; δ , ϕ_{τ} , β , k – опытные параметры, определяемы в зависимости от состава бетона и условий его твердения.

Качанов Л. М. [74] для описания скорости деформаций ползучести при медленном и монотонном изменении напряжений использовал произведение двух функций:

$$\dot{\varepsilon}_{\pi} = B_1(t) \cdot \sigma^m, \qquad (1.2.27)$$

где коэффициент вязкости *K*(*t*) представлен функцией *B*₁(*t*) – положительно убывающей функцией зависящей от времени и асимптотически приближающейся к своему предельному значению *B*₁; *m* – постоянный коэффициент, названный показателем ползучести.

Основное уравнение теории Качанова, устанавливающее связь деформаций от напряжений имеет вид

$$\dot{\varepsilon} = \frac{1}{E}\dot{\sigma} + B_1(t) \cdot \sigma^m, \qquad (1.2.28)$$

где первым слагаемым правой части уравнения описываются мгновенные деформации по закону Гука.

В литературе указано, что уравнение (1.2.28) имеет ряд ограничений при использовании: оно справедливо при не слишком малых скоростях ползучести; напряжения σ должны меняться медленно и монотонно; начало процесса ползучести должно протекать при достаточно больших напряжениях σ [74 с. 15].

Основное уравнение нелинейной теории старения имеет вид

$$\varepsilon(t) = \frac{\sigma_0}{E_0} + \frac{f(\sigma_0)}{E_0} \varphi_t + \int_0^t \left[\frac{d\sigma(\tau)}{d\tau} \frac{1}{E(\tau)} + \frac{df[\sigma(\tau)]}{d\tau} \frac{\varphi_t - \varphi_\tau}{E_0} \right] d\tau, \qquad (1.2.29)$$

В дальнейшем теория старения получила развитие в модифицированной теории старения, позволяющей учитывать наибольшее нарушение параллельности кривой ползучести, наблюдаемое на начальном участке кривой, вертикальным отрезком αφ_τ. С верхнего конца отрезка кривая ползучести принимается параллельно начальной.

Введенный коэффициент α приводит к преобразованию уравнения ползучести (1.2.20) в следующий вид:

$$\dot{\varepsilon}(t) = \frac{1}{E(t)}\dot{\sigma} + \sigma \frac{1}{E_0} \left(\alpha \phi_t \, \frac{\dot{\sigma}}{\sigma} + \dot{\phi}_t \right), \qquad (1.2.30)$$

где после раскрытия скобок первое слагаемое характеризует скорость мгновенных деформаций; второе слагаемое приближенно учитывает влияние обратимости деформаций ползучести; третье слагаемое учитывает вязкую составляющую деформаций ползучести.

Известно, что при снятии длительно действующей постоянной нагрузки бетонный элемент стремится восстановить свои первоначальные размеры, но бетона этот процесс не учитывает, то есть деформации ползучести являются необратимыми. Другим недостатком теории является то, что она, не пригодна для описания длительных процессов, в ходе которых напряжения или деформации претерпевают значительные изменения (например, циклические загружения).

Исследования Улицкого И. И., Барашикова А. Я., Голышева А. Б., Лившица Я. Д. установили, что, применительно к исследованию напряженно-

деформированного состояния сжатых железобетонных элементов, загруженных постоянной силой теория старения достаточно точно описывает экспериментальные данные. К достоинствам теории относится ее математическая простота и возможность независимого друг от друга выбора функций, описывающих мгновенные деформации и деформации ползучести, в том числе возможность широкого выбора аналитической зависимости для функции $f(\sigma_6)$.

1.3. Экспериментальное получение диаграмм мгновенного деформирования бетона с ниспадающим участком и их аналитические выражения

К числу исследований, направленных на экспериментальное уточнение нелинейной мгновенного деформирования бетона, подбор диаграммы эмпирических функций, аппроксимирующих данные кривые, и применение формул в расчетах относятся работы Таля К. Э. [126], Михайлова В. В. [95], H. [8] 11], M. Байкова B. Саржина (Muharrem Sargin) [164], Бондаренко В. М. [16], Карпенко Н. И. [69 – 71], Бамбура А. Н. [12], Хогнестеда Е. (Eivind Hognestad) [159], Маиляна Д. Р. [84], Назаренко В. Г., Боровских А. В. [97], Попова Н. Н. и Растогруева Б. С. [103, 104], Гущи Ю. П. и Лемыша Л. Л. [62], Прокоповича А. А. [105], Кабайла А. (Kabaila A.) [151, 154], Янга Л. Е. (Lyle E. Young) [175], Ли Л. (Lawrence H. N. Lee) [160], Смита Р. Г. (Smith R. G.) [169] и других авторов.

Экспериментальные исследования Таля К. Э. [126] центрально сжатых железобетонных призм размерами 100×100×300 мм продольно армированных 12-ю стержнями высокопрочной проволоки диаметром 5,0 мм с пределом текучести более 5000 кгс/см², равномерно располагающихся по четырем боковым граням призм, позволили получить нелинейную диаграмму мгновенного деформирования бетона с ниспадающим участком.

Таль полагал, что в течение эксперимента продольная арматура работает упруго при любых значениях нагрузки вплоть до достижения арматуры предела текучести, поэтому используя закон Гука при обработке эксперимента, Таль на основе измеренных продольных деформаций определил усилия, воспринимаемые отдельно сталью и отдельно бетоном. На рис. 1.4.1 приведены графики зависимостей деформаций бетона и железобетона от величины нагрузки. Появление ниспадающего участка для бетона Таль объяснял перераспределением усилий с бетона на арматуру и отсутствием резкого нарастания напряжений.

Рис. 1.4.1. Деформации бетона и железобетона в опытах Таля К. Э.

Аналогичную диаграмму деформирования бетона с ниспадающим участком (рис. 1.4.2) получил В. В. Михайлов [95], проведя испытания на изгиб бетонных балок, заключенных в специальные кондуктора, длиной равной пролету балок. На основе результатов эксперимента Михайлов сделал вывод о том, что бетон при высоких уровнях загружения способен проявлять большие пластические деформации, не влекущие за собой потери прочности.

Рис. 1.4.2. Диаграмма растяжимости бетона, полученная в исследованиях Михайлова

В результате испытаний железобетонных призм на центральное сжатие с большим процентом армирования (до $\mu = 7,7$ %) из высокопрочного бетона (призменная прочность $R_{np} = 814$ кгс/см²) и высокопрочной стали диаметром до 18 мм (предел текучести до 6000 кгс/см²), проведенных В. В. Дегтеревым и Ю. Н. Крестниковым [63] была также получена нелинейная диаграмма с ниспадающим участком отражающая реальную работу бетона (рис. 1.4.3).

Рис. 1.4.3. Распределение усилий в бетоне и арматуре призм
1 – усилие в арматуре; 2 – усилие в бетоне по минимальному ε_a;
3 – усилие в бетоне по максимальному ε_a; 4 – усилие в контрольной бетонной призме

Из анализа замеренных укорочений образцов, исследователи сделали вывод о том, что бетон одинаковой прочности с введенной рабочей арматурой

деформируется сильнее и при этом не разрушается, нежели неармированный бетон.

Из рис. 1.4.1 и рис. 1.4.3 видно, что разрушение бетона может произойти как при достижении напряжений в бетоне предела прочности *R*, так и при напряжениях величина которых меньше *R*, но при деформациях, соответствующих ниспадающей ветви диаграммы деформирования бетона.

Хогнестед Е. (*Eivind Hognestad*) с соавторами [159], испытав внецентренносжатые колонны на кратковременную нагрузку, обнаружили, что напряжения в бетоне при высоких уровнях загружения непропорциональны деформациям. Исследователями также был получен ниспадающий участок диаграммы мгновенного деформирования бетона.

Для аналитического описания зависимости между напряжениями и деформациями сжатого бетона исследователями было предложено большое количество уравнений, подробный обзор которых приведен в работах [64, 76, 83, 164]. Некоторые из уравнений приведены в табл. 1.3.1.

При сравнении кривых зависимости мгновенных деформаций ОТ напряжений бетона, построенных по приведенным формулам ДЛЯ В относительных координатах, выяснилось, что все они проходят через точку максимальных напряжений f_{cm} , но имеют большой разброс как на восходящей ветви, так и на ниспадающем участке. Тем не менее, формула Саржина внедрена в европейские нормы *Eurocode* 2, а формула Байкова В. Н. отличается и необходимой точностью аппроксимации кривой и удобством применения в расчетах.

Формулы, описывающие диаграмму мгновенного деформирования бетона

№ п/п	Автор	Уравнение для σ_{δ}	Примечание
1	Бюльфингер Г. Б. 1729 г.;	$A \epsilon^k$	А и k – опытные коэффициенты.
	Смит-Янг (<i>Smith G. M.</i> ,		Применима только для восходящей ветви диаграммы
	Young L. E.) [168]		
2	Герстнер Ф. И., 1831 г.;	$A_1 \varepsilon - A_2 \varepsilon^2$	<i>А</i> ₁ и <i>А</i> ₂ – постоянные коэффициенты.
	Митропольский Н. М. [124]		Несимметричность относительно растяжения-сжатия.
3	Сен-Венан 1864 г.	$A\left[1 - \left(1 - \frac{\varepsilon}{\varepsilon_{nn}}\right)^n\right]$	ε_{nn} – деформация, соответствующая пределу прочности бетона; $n = \frac{E}{E_c}$; E – начальный модуль упругости; E_c – наибольшее значение
			секущего модуля.
4	Лукаш П. А. [83];	$E\varepsilon - A_3\varepsilon^3$	А3 – коэффициент
	Пастушихин В. Н.		Исправляет недостаток зависимости Герстнера, касающийся несиммет-
	[99 – 101]		ричности относительно растяжения-сжатия
5	Зависимость с че- тырьмя константами	$A_1 \varepsilon^{k_1} - A_2 \varepsilon^{k_2}$	A_1, k_1, A_2, k_2 – постоянные коэффициенты
6	Гениев Г. А. [31]	$\sum_{1}^{m} r_n \sin k_n \varepsilon;$	k_n – коэффициент предельной деформации, равный $k_n = \frac{\pi n}{2} \cdot \frac{1}{\varepsilon_{np}};$
		$\sum_{1}^{m} r_{n} \sin \frac{\pi n}{2} \xi$	$n = 1, 3, 5; \xi = \frac{\varepsilon}{\varepsilon_{np}}$

7	Соколовский В. В.	SE	s, t – постоянные коэффициенты, определяемые экспериментально.
	[83]	$\sqrt{1 + \left(\frac{\varepsilon}{t}\right)^2}$	Не позволяет описать ниспадающий участок диаграммы
8	Прокопович А. А. [105]	$\epsilon E_6 e^{-\kappa_\epsilon^lpha}$	$\alpha = -\frac{1}{\ln v_{VR}} K = -\ln v_{VR} \left(\frac{K_V R_{np}}{v_{VR} E_6} \right)^{\frac{1}{\ln v_{VR}}}; v_{VR}$ – коэффициент упругости бетона, соответствующий его пределу прочности (при $\sigma = K_V R_{np}$) и заданной скорости деформирования V _E ; K_V – коэффициент, зависящий от скорости деформирования V _E и учитывающий влияние длительности испытаний бетонных образцов на их прочность
9	Онищик Л. И. [64]	$1,1R_{\rm np}\left(1-e^{-0.9\frac{E_6\varepsilon_6}{R_{\rm np}}}\right)$	Уравнение не позволяет описать деформации бетона на нисходящей ветви
10	Дыховичный А. А. [64]	$R_{b}\left[\left(k_{1}\sqrt{k_{2}-\left(\varepsilon_{5}-0.0022\right)^{2}}-k^{3}\right)\right]$	$0,0022$ – относительная деформация бетона, соответствующая R_b ; k_1, k_2 – коэффициенты.
11	Шах-Винтер (Shah Surendra P., Winter George) [165]	$E\varepsilon e^{-\left(\frac{E\varepsilon-2}{x_0}\right)^m}$	<i>m</i> , <i>x</i> ₀ – эмпирические коэффициенты
12	Тазехулахов С. А. [125]	$\epsilon R_{np}An \left \epsilon\right ^m e^{-p\left \epsilon\right ^r B}$	$\varepsilon_{\text{раз}}$ – деформация, при которой исчерпана несущая способность; $n, m, p, r - \kappa oэффициенты: A = \frac{1}{K_1} K_2^m; B = K_2^r; K_1 = \frac{R_{\text{пр}}}{R_{\text{p}}}; K_2 = \frac{\varepsilon_{\text{раз}}^{c\pi}}{\varepsilon_{\text{раз}}^{pacr}}$

13	Штурман-Шах-Винтер	$A_1\varepsilon + A_2\varepsilon^n$	А1, А2 и п – коэффициенты						
	(Sturman Gerald M.,								
	Shah Surendra P.,								
	Winter George) [171]:								
14	Кабайла А.	$\left[20(\varepsilon) \right]^{2}$	$f_{cm} = 2f_{cm}$						
	(Kabaila A.) [154]	$f_{cm}\left[2,0\left(\frac{1}{\varepsilon_{c1}}\right)-1,189\left(\frac{1}{\varepsilon_{c1}}\right)+\right]$	$\int c_{c} f_{cm}$ – максимальное напряжение, ε_{cl} – деформация бетона, ε_{cl} – E_c ,						
		$\left(\begin{array}{c} \mathbf{c} \end{array}\right)^3 \qquad \left(\begin{array}{c} \mathbf{c} \end{array}\right)^4$	E_c – модуль упругости бетона, $E_c = 1800 + 460 f_{cm}$						
		$+0,1763\left(\frac{c}{\varepsilon_{c1}}\right) +0,0027\left(\frac{c}{\varepsilon_{c1}}\right)$							
15	Caeнз (Saenz Luis P.)	Εε	$r f_{cm}$						
	[154]	$\frac{1}{1+\left(\frac{E}{2}-2\right)\left(\frac{\varepsilon}{2}\right)+\left(\frac{\varepsilon}{2}\right)^2}$	E_s – секущий модуль упругости бетона, $E_s = \frac{cm}{\varepsilon_{c1}}$						
		$\sum_{s} \left(E_{s} \right) \left(\varepsilon_{c1} \right) \left(\varepsilon_{c1} \right)$							
16	Тулин-Герстл	Ε₀ε	<i>а</i> и <i>b</i> – эмпирические константы;						
	(Tulin Leonard G.,	$\left(\begin{array}{c} \epsilon \end{array} \right)^{b}$	$E = (a+1) \frac{f_{cm}}{f_{cm}}$						
	Gerstle Kurt H.) [154]	$a + \left(\frac{\varepsilon_{c1}}{\varepsilon_{c1}}\right)$	\mathcal{L}_0 – начальный модуль упругости, $\mathcal{L}_0 = (\alpha + 1)$ ε_0						
17	Десай-Кришнан	$E_0 \epsilon$	$E = 2f_{cm}$						
	(Desayi Prakash,	$\overline{\left(\varepsilon \right)^2}$	\mathcal{E}_0 – начальный модуль упругости, $\mathcal{L}_0 = \frac{1}{\mathcal{E}_{c1}}$,						
	Krishnan S.) [151]	$1 + \left(\frac{1}{\varepsilon_{c1}}\right)$	ε_{c1} – деформация образца, советующая напряжению f_{cm}						
18	Смит Ж. М., Янг Л. Е.	$\epsilon^{1-\frac{\epsilon}{2}}$	<i>f_{cm}</i> – максимальное напряжение на диаграмме;						
	(Smith G. M., Young L. E.)	$f_{cm} = \frac{\varepsilon}{\varepsilon_{c1}} e^{-\varepsilon_{c1}}$	ε_{c1} – деформация образца, советующая f_{cm}						
	[167, 175]; Назаренко В. Г.,	61							
	Боровских А. В. [97]								

19	Формула ЕКБ		f_{cm} – максимальное напряжение на диаграмме;
	(European Concrete	$f_{cm} \frac{1}{\varepsilon_{c1}} \left(2 - \frac{1}{\varepsilon_{c1}}\right);$	ε_{c1} – деформация образца, советующая f_{cm}
	Committee) [154]		
		$E\varepsilon\left(1-\frac{\varepsilon}{2\varepsilon_{c1}}\right)$	
20	Саржин [164]	$Ax + (D-1)x^{2}$	k ₃ , f _c и D – параметры, характеризующие вид бетона
	(Muharrem Sargin);	$k_{3}f_{c}\frac{1}{1+(A-2)x+Dx^{2}},$	$\mathbf{\epsilon} = \mathbf{\epsilon} \cdot \mathbf{\epsilon} \mathbf{\epsilon} \mathbf{\epsilon}_{c} \mathbf{\epsilon}_{0}$
	Eurocode 2 [156]		$\mathbf{x} = \frac{\mathbf{x}}{\mathbf{\varepsilon}_0}, A = \frac{\mathbf{x}}{\mathbf{k}_3 f_c} .$
21	Евграфов Г. К. [65];	$k_1 \varepsilon + k_2 \varepsilon^2$	k_1, k_2, k_3, k_4, k_5 – постоянные коэффициенты
	Столяров Я. В. [120 – 123];		
	Фрайфельд С. Е. [137]		
22	Попов Н. Н.,	$k_1 \varepsilon + k_2 \varepsilon^2 + k_3 \varepsilon^3$	
	Расторгуев Б. С.,		
	Забегаев А. В. [103, 104]		
23	Гуща Ю. П.,	$k_1 \varepsilon + k_2 \varepsilon^2 + k_3 \varepsilon^3 + k_4 \varepsilon^4$	
	Лемыш Л. Л. [62]		
24	Байков В. Н. [8 – 11]	$k_1 \varepsilon + k_2 \varepsilon^2 + k_3 \varepsilon^3 + k_4 \varepsilon^4 + k_5 \varepsilon^5$	
25	Залпуев А. М. [66]	$m_{\hat{\epsilon}}^{\epsilon} - m^{-1}$	т – неопределенный параметр, отыскиваемый из физического условия
		EEbe E	задачи; ĉ – деформация бетона, соответствующая максимальному
			напряжению на диаграмме

Выводы.

Обзор и анализ литературных источников позволил сделать следующие выводы:

1) в существующих теориях ползучести бетона (теория упруго-ползучего тела, теория упругой наследственности, теория старения, в том числе модифицированная теория старения) мгновенные деформации бетона считаются упругими и принимаются пропорциональными напряжениям независимо от величины напряжения в бетоне;

2) в европейских и российских нормах по расчету железобетонных конструкций ползучесть бетона учитывается через коэффициент ползучести, полученный на основе линейного закона Гука;

3) существующие исследования напряженно-деформированного состояния сжатых железобетонных элементов с учетом ползучести бетона проведены в рамках мгновенно-линейных деформаций бетона;

4) экспериментально установлено, что диаграмма мгновенного деформирования бетона является нелинейной и содержит ниспадающий участок.

На основании вышеизложенного с целью совершенствования теории ползучести бетона и расчетов железобетонных конструкций, были поставлены следующие задачи:

1) получение уточненных феноменологических уравнений ползучести бетона, позволяющих учитывать мгновенную нелинейность бетона;

2) изучение напряженно-деформированного состояния сжатых железобетонных элементов и получение законов изменения напряжений и деформаций бетона;

3) проведение экспериментальных исследований по выявлению влияния мгновенной нелинейности бетона на величину характеристики ползучести бетона;

4) определение условной критической силы для железобетонной колонны в соответствие с российскими нормами СП 52-101-2003 и СП63.13330.2012 и по предложенной автором методике и сравнение полученных результатов.

ГЛАВА 2. ИССЛЕДОВАНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ СЖАТЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ С УЧЕТОМ МГНОВЕННОЙ НЕЛИНЕЙНОСТИ И ПОЛЗУЧЕСТИ БЕТОНА

2.1. Деформирование бетона при кратковременном загружении

В части 1-1 *Eurocode* 2 [156] диаграмма зависимости между напряжениями бетона σ_c и мгновенными деформациями ε_c для случая одноосного кратковременного сжатия принимается нелинейной с ниспадающим участком (рис. 2.1.1).

Рис. 2.1.1. Нелинейная диаграмма мгновенного деформирования бетона, принятая *Eurocode* 2, частью 1-1

На графике условно выделяют следующие характерные участки:

1) линейный, на котором напряжения бетона σ_c нарастают пропорционально деформациям ε_c , при этом напряжения σ_c не превышают 20 % от величины f_{cm} .

2) восходящий криволинейный, на котором напряжения σ_c растут медленнее деформаций ε_c и при величине деформации $\varepsilon_c = \varepsilon_{c1}$ достигают максимума $\sigma_c = f_{cm}$. Данный участок характерен при напряжениях $0,2 f_{cm} < \sigma_c \le 1,0 f_{cm}$;

3) нисходящий криволинейный, на котором напряжения уменьшаются $\sigma_c \leq f_{cm}$, а деформации продолжают увеличиваться вплоть до разрушения образца.

Аналитическая зависимость, аппроксимирующая данную кривую (см. рис. 2.1.1), записывается в виде (формула Саржина [164], 1971 г.):

$$\frac{\sigma_c}{f_{cm}} = \frac{k\eta - \eta^2}{1 + (k - 2)\eta},$$
(2.1.1)

где k и η – коэффициенты, равные $\eta = \frac{\varepsilon_c}{\varepsilon_{c1}}, \quad k = \frac{1,05E_{cm} \cdot |\varepsilon_{c1}|}{f_{cm}}; \quad \sigma_c$ – напряжение в бетоне в момент наблюдения; ε_c – относительная деформация бетона; ε_{c1} – деформация бетона, соответствующая максимальному напряжению $f_{cm}; \\\varepsilon_{cu1}$ – предельная деформация бетона, соответствующая разрушению образца; f_{cm} – максимальное напряжение в бетоне (среднее значение прочности бетонного цилиндра при сжатии в возрасте 28 суток); E_{cm} – касательный модуль упругости бетона, определенный в возрасте 28 суток.

Предельные величины деформаций ε_{c1} и ε_{cu1} , зависящие от класса бетона по прочности, приведены в табл. 2.1.1.

Таблица 2.1.1

Класс бетона	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	C55/67	C60/75	C70/85	C80/95	C90/105
<i>f_{ck},</i> МПа	12	16	20	25	30	35	40	45	50	55	60	70	80	90
<i>f_{ck,cube},</i> МПа	15	20	25	30	37	45	50	55	60	67	75	85	95	105
$\frac{f_{ck}}{f_{ck,cube}}$	0,80	0,80	0,80	0,83	0,81	0,78	0,80	0,82	0,83	0,82	0,80	0,82	0,84	0,86
<i>f_{cm},</i> МПа	20	24	28	33	38	43	48	53	58	63	68	78	88	98
$\epsilon_{c1},$ %00	1,8	1,9	2,0	2,1	2,2	2,25	2,3	2,4	2,45	2,5	2,6	2,7	2,8	2,8
$\epsilon_{cu1},$ %00					3,5					3,2	3,0	2,8	2,8	2,8

Прочностные и деформативные характеристики бетонов

Примечание.

 f_{ck} – нормативная цилиндрическая прочность бетона на сжатие в возрасте 28 суг.;

f_{ck,cube} – нормативная кубиковая прочность бетона на сжатие.

Полагая, что величина ε_{c1} является неотрицательным числом и подставляя коэффициенты η и *k* в формулу (2.1.1), имеем:

$$\frac{\sigma_c}{f_{cm}} = \frac{\frac{1,05E_{cm} \cdot \varepsilon_{c1}}{f_{cm}} \left(\frac{\varepsilon_c}{\varepsilon_{c1}}\right) - \left(\frac{\varepsilon_c}{\varepsilon_{c1}}\right)^2}{1 + \left(\frac{1,05E_{cm} \cdot \varepsilon_{c1}}{f_{cm}} - 2\right) \left(\frac{\varepsilon_c}{\varepsilon_{c1}}\right)}.$$

Полученное уравнение в буквенных обозначениях, принятых в Российских нормах СП [118, 119], записывается в виде:

$$\frac{\sigma_{b}}{R_{b}} = \frac{\frac{E_{b} \cdot \varepsilon_{b0}}{R_{b}} \left(\frac{\varepsilon_{b}}{\varepsilon_{b0}}\right) - \left(\frac{\varepsilon_{b}}{\varepsilon_{b0}}\right)^{2}}{1 + \left(\frac{E_{b} \cdot \varepsilon_{b0}}{R_{b}} - 2\right) \left(\frac{\varepsilon_{b}}{\varepsilon_{b0}}\right)},$$
(2.1.2)

где σ_b – напряжение бетона в момент наблюдения; R_b – расчетное сопротивление бетона осевому сжатию для предельного состояния первой группы; ε_b – относительная деформация бетона при равномерном осевом сжатии; ε_{b0} – предельная относительная деформация бетона при равномерном осевом сжатии, ε_{b0} = 0,002 [118, п. 5.1.12], [119, п. 6.1.14]; E_b – начальный модуль упругости бетона при сжатии и растяжении.

Формула (2.1.2) представляет собой квадратное уравнение относительно деформаций бетона є_b:

$$\frac{R_b}{\varepsilon_{b0}^2}\varepsilon_b^2 + \frac{\sigma_b}{\varepsilon_{b0}}\left(\frac{E_b\varepsilon_{b0}}{R_b} - 2 - E_b\right)\varepsilon_b + \sigma_b = 0,$$

откуда выражая ε_b , получаем

$$\varepsilon_{b} = \frac{-\frac{\sigma_{b}}{\varepsilon_{b0}} \left(\frac{E_{b}\varepsilon_{b0}}{R_{b}} - 2 - E_{b}\right)}{2\frac{R_{b}}{\varepsilon_{b0}^{2}}} \pm \frac{\sqrt{\left(\frac{\sigma_{b}}{\varepsilon_{b0}}\right)^{2} \left(\frac{E_{b}\varepsilon_{b0}}{R_{b}} - 2 - E_{b}\right)^{2}} - 4\frac{R_{b}}{\varepsilon_{b0}^{2}}\sigma_{b}}{2\frac{R_{b}}{\varepsilon_{b0}^{2}}}, \qquad (2.1.3)$$

где при нулевом напряжении $\sigma_b = 0$ получается и нулевая деформация $\varepsilon_b = 0$.

Применение в расчетах железобетонных элементов формулы (2.1.3) вызывает математические трудности, поэтому преобразуем уравнение (2.1.2) в более удобный вид для практического использования. Для этого воспользуемся предложением Байкова В. М., известного специалиста в теории железобетона, который установил, что первые пять членов степенного ряда достаточно точно аппроксимирует кривую мгновенной нелинейности бетона и обладает удобством применения в расчетах строительных конструкций:

$$\sigma_b = A_1 \varepsilon_b + A_2 \varepsilon_b^2 + A_3 \varepsilon_b^3 + A_4 \varepsilon_b^4 + A_5 \varepsilon_b^5, \qquad (2.1.4)$$

где A_1, A_2, A_3, A_4 и A_5 – опытные коэффициенты.

Уточним значения коэффициентов, входящих в уравнение (2.1.4). Умножив в формуле (2.1.2) левую и правую части равенства на R_b и вынося в числителе ε_b за скобки, получим

$$\sigma_{b} = \frac{\left(E_{b} - \frac{R_{b}}{\varepsilon_{b0}^{2}}\varepsilon_{b}\right)\varepsilon_{b}}{1 + \left(\frac{E_{b}}{R_{b}} - \frac{2}{\varepsilon_{b0}}\right)\varepsilon_{b}}.$$
(2.1.5)

В равенство (2.1.5) введем коэффициенты g, k и p, равные

$$g = E_b, \quad k = -\frac{R_b}{\varepsilon_{b0}^2}, \quad p = \frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}},$$
 (2.1.6)

и преобразуем соотношение (2.1.5) в выражение следующего вида:

$$\sigma_b = \frac{g + k \varepsilon_b}{1 + p \varepsilon_b} \varepsilon_b, \qquad (2.1.7)$$

которое представляет собой прямую зависимость

$$\sigma_b = f_1(\varepsilon_b). \tag{2.1.8}$$

Используя разложение в ряд Тейлора геометрической прогрессии

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \dots,$$

преобразуем выражение (2.1.7)

$$\sigma_{b} = \frac{g + k \varepsilon_{b}}{1 + p \varepsilon_{b}} \varepsilon_{b} = \left(g\varepsilon_{b} + k \varepsilon_{b}^{2}\right) \frac{1}{1 + p \varepsilon_{b}} = \left(g\varepsilon_{b} + k\varepsilon_{b}^{2}\right) \left(1 - p\varepsilon_{b} + p^{2}\varepsilon_{b}^{2} - p^{3}\varepsilon_{b}^{3} + p^{4}\varepsilon_{b}^{4} - \ldots\right) =$$
$$= g\varepsilon_{b} - gp\varepsilon_{b}^{2} + gp^{2}\varepsilon_{b}^{3} - gp^{3}\varepsilon_{b}^{4} + gp^{4}\varepsilon_{b}^{5} + k\varepsilon_{b}^{2} - kp\varepsilon_{b}^{3} + kp^{2}\varepsilon_{b}^{4} - kp^{3}\varepsilon_{b}^{5} + \ldots$$

Сгруппировав слагаемые при одинаковых степенях ε_b , имеем

$$\sigma_b = g\varepsilon_b + (k - gp)\varepsilon_b^2 + (gp^2 - kp)\varepsilon_b^3 + (kp^2 - p^3g)\varepsilon_b^4 + (p^4g - kp^3)\varepsilon_b^5.$$

Используя соотношения (2.1.6), найдем значения коэффициентов, стоящих при переменных ε_b :

$$A_{\rm l} = g = E_b; \tag{2.1.9}$$

$$A_{2} = k - gp = -\frac{R_{b}}{\varepsilon_{b0}^{2}} - \left(\frac{E_{b}}{R_{b}} - \frac{2}{\varepsilon_{b0}}\right) E_{b}; \qquad (2.1.10)$$

$$A_{3} = gp^{2} - kp = \left(\frac{E_{b}}{R_{b}} - \frac{2}{\varepsilon_{b0}}\right)^{2} E_{b} + \frac{R_{b}}{\varepsilon_{b0}^{2}} \left(\frac{E_{b}}{R_{b}} - \frac{2}{\varepsilon_{b0}}\right); \qquad (2.1.11)$$

$$A_{4} = kp^{2} - p^{3}g = -\frac{R_{b}}{\varepsilon_{b0}^{2}} \left(\frac{E_{b}}{R_{b}} - \frac{2}{\varepsilon_{b0}}\right)^{2} - \left(\frac{E_{b}}{R_{b}} - \frac{2}{\varepsilon_{b0}}\right)^{3} E_{b}; \qquad (2.1.12)$$

$$A_{5} = p^{4}g - kp^{3} = \left(\frac{E_{b}}{R_{b}} - \frac{2}{\varepsilon_{b0}}\right)^{4} E_{b} + \frac{R_{b}}{\varepsilon_{b0}^{2}} \left(\frac{E_{b}}{R_{b}} - \frac{2}{\varepsilon_{b0}}\right)^{3}.$$
 (2.1.13)

Универсальность коэффициентов $A_1 - A_5$ заключается в том, что с их помощью устанавливается математическая связь между уравнением (2.1.4) и формулой *Eurocode* 2 (2.1.1).

Для решения некоторых задач в теории железобетона вместо прямой зависимости (2.1.8), удобнее использовать обратную зависимость вида

$$\varepsilon_b = f_2(\sigma_b), \qquad (2.1.14)$$

которая, ограничиваясь первыми пятью слагаемыми степенного ряда, имеет вид

$$\varepsilon_b = a\sigma_b + b\sigma_b^2 + c\sigma_b^3 + d\sigma_b^4 + e\sigma_b^5, \qquad (2.1.15)$$

где *a*, *b*, *c*, *d* и *e* – опытные коэффициенты.

Из уравнения (2.1.7) выразим

$$\varepsilon_b = \frac{1 + p \varepsilon_b}{g + k \varepsilon_b} \sigma_b, \qquad (2.1.16)$$

что тождественно

$$g\varepsilon_b + k\,\varepsilon_b^2 = (1+p\,\varepsilon_b)\sigma_b.$$

В полученное равенство вместо переменой є_b подставим ряд (2.1.15):

$$g\left(a\sigma_{b}+b\sigma_{b}^{2}+c\sigma_{b}^{3}+d\sigma_{b}^{4}+e\sigma_{b}^{5}\right)+k\left(a\sigma_{b}+b\sigma_{b}^{2}+c\sigma_{b}^{3}+d\sigma_{b}^{4}\right)^{2} = \left[1+p\left(a\sigma_{b}+b\sigma_{b}^{2}+c\sigma_{b}^{3}+d\sigma_{b}^{4}\right)\right]\sigma_{b}.$$

Отделяя коэффициенты при одинаковых степенях σ_b , найдем значения коэффициентов *a*, *b*, *c*, *d* и *e*:

1) коэффициент при о_b:

$$ga = 1$$
,

откуда

$$a=\frac{1}{g},$$

то есть, с учетом обозначений (2.1.6), имеем

$$a = \frac{1}{E_b}.$$
 (2.1.17)

2) коэффициент при σ_b^2 :

$$gb + ka^2 = pa,$$

откуда

$$b = \frac{pa - ka^{2}}{g} = \frac{p\frac{1}{g} - k\left(\frac{1}{g}\right)^{2}}{g} = \frac{pg - k}{g^{3}} = \frac{1}{g^{3}}(pg - k),$$

то есть, с учетом обозначений (2.1.6), имеем

$$b = \frac{1}{E_b^3} \left[\left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}} \right) E_b + \frac{R_b}{\varepsilon_{b0}^2} \right].$$
(2.1.18)

3) коэффициент при σ_b^3 :

$$gc + 2kab = pb$$
,

откуда

$$c = \frac{pb - 2kab}{g} = \frac{1}{g} (pb - 2kab) = \frac{1}{g} \left[p \frac{1}{g^3} (pg - k) - 2k \frac{1}{g^4} (pg - k) \right] = \frac{1}{g^5} \left(p^2 g^2 - 3pgk + 2k^2 \right),$$

то есть, с учетом обозначений (2.1.6), имеем

$$c = \frac{1}{E_b^5} \left[\left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}} \right)^2 E_b^2 + 3 \left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}} \right) E_b \frac{R_b}{\varepsilon_{b0}^2} + 2 \left(\frac{R_b}{\varepsilon_{b0}^2} \right)^2 \right].$$
 (2.1.19)

4) коэффициент при σ_b^4 :

$$gd + kb^2 + 2kac = pc,$$

откуда

$$d = \frac{1}{g} \left(pc - 2kac - kb^2 \right) = \frac{1}{g} \left[p \frac{1}{g^5} \left(p^2 g^2 - 3pgk + 2k^2 \right) - 2k \frac{1}{g^6} \left(p^2 g^2 - 3pgk + 2k^2 \right) - k \left(\frac{1}{g^3} \left(pg - k \right) \right)^2 \right] = \frac{1}{g} \left[\frac{1}{g^6} \left(p^3 g^3 - 3p^2 g^2 k + 2k^2 pg \right) - \frac{1}{g^6} \left(2p^2 g^2 k - 6pgk^2 + 4k^3 \right) - k \frac{1}{g^6} \left(p^2 g^2 - 2pgk + k^2 \right) \right] = \frac{1}{g^7} \left(p^3 g^3 - 3p^2 g^2 k + 2k^2 pg - 2p^2 g^2 k + 6pgk^2 - 4k^3 - p^2 g^2 k + 2pgk^2 - k^3 \right) = \frac{1}{g^7} \left(p^3 g^3 - 3p^2 g^2 k + 2k^2 pg - 2p^2 g^2 k + 6pgk^2 - 4k^3 - p^2 g^2 k + 2pgk^2 - k^3 \right) = \frac{1}{g^7} \left(p^3 g^3 - 6p^2 g^2 k + 10pgk^2 - 5k^3 \right),$$

то есть, с учетом обозначений (2.1.6), имеем

$$d = \frac{1}{E_b^7} \left[\left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}} \right)^3 E_b^3 + 6 \left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}} \right)^2 E_b^2 \frac{R_b}{\varepsilon_{b0}^2} + 10 \left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}} \right) E_b \left(\frac{R_b}{\varepsilon_{b0}^2} \right)^2 + 5 \left(\frac{R_b}{\varepsilon_{b0}^2} \right)^3 \right].$$
(2.1.20)

5) коэффициент при σ_b^5 :

$$ge + 2kad + 2kbc = pd$$

откуда

$$e = \frac{1}{g} (pd - 2kad - 2kbc) = \frac{1}{g} \left[p \frac{1}{g^7} (p^3 g^3 - 6p^2 g^2 k + 10k^2 pg - 5k^3) - 2k \frac{1}{g^8} (p^3 g^3 - 6p^2 g^2 k + 10k^2 pg - 5k^3) - 2k \frac{1}{g^8} (pg - k) (p^2 g^2 - 3pgk + 2k^2) \right] = \frac{1}{g} \left[\frac{1}{g^8} (p^4 g^4 - 6p^3 g^3 k + 10k^2 p^2 g^2 - 5k^3 pg) - \frac{1}{g^8} (2kp^3 g^3 - 12p^2 g^2 k^2 + 20k^3 pg - 10k^4) - \frac{1}{g^8} (2pgk - 2k^2) (p^2 g^2 - 3pgk + 2k^2) \right] = \frac{1}{g^8} \left[\frac{1}{g^8} (p^4 g^4 - 6p^3 g^3 k + 10k^2 p^2 g^2 - 5k^3 pg) - \frac{1}{g^8} (2kp^3 g^3 - 12p^2 g^2 k^2 + 20k^3 pg - 10k^4) - \frac{1}{g^8} (2pgk - 2k^2) (p^2 g^2 - 3pgk + 2k^2) \right] = \frac{1}{g^8} \left[\frac{1}{g^8} (p^4 g^4 - 6p^3 g^3 k + 10k^2 p^2 g^2 - 5k^3 pg) - \frac{1}{g^8} (2pgk - 2k^2) (p^2 g^2 - 3pgk + 2k^2) \right] = \frac{1}{g^8} \left[\frac{1}{g^8} (p^4 g^4 - 6p^3 g^3 k + 10k^2 p^2 g^2 - 5k^3 pg) - \frac{1}{g^8} (2pgk - 2k^2) (p^2 g^2 - 3pgk + 2k^2) \right] = \frac{1}{g^8} \left[\frac{1}{g^8} (p^4 g^4 - 6p^3 g^3 k + 10k^2 p^2 g^2 - 5k^3 pg) - \frac{1}{g^8} (2pgk - 2k^2) (p^2 g^2 - 3pgk + 2k^2) \right] = \frac{1}{g^8} \left[\frac{1}{g^8} (p^4 g^4 - 6p^3 g^3 k + 10k^2 p^2 g^2 - 5k^3 pg) - \frac{1}{g^8} (2pgk - 2k^2) (p^2 g^2 - 3pgk + 2k^2) \right] = \frac{1}{g^8} \left[\frac{1}{g^8} (p^4 g^4 - 6p^3 g^3 k + 10k^2 p^2 g^2 - 5k^3 pg) - \frac{1}{g^8} (2pgk - 2k^2) (p^2 g^2 - 3pgk + 2k^2) \right] = \frac{1}{g^8} \left[\frac{1}{g^8} (p^4 g^4 - 6p^3 g^3 k + 10k^2 p^2 g^2 - 5k^3 pg - 10k^4) - \frac{1}{g^8} (2pgk - 2k^2) (p^2 g^2 - 3pgk + 2k^2) \right]$$

$$= \frac{1}{g^9} \Big[p^4 g^4 - 6p^3 g^3 k + 10k^2 p^2 g^2 - 5k^3 pg - 2kp^3 g^3 + 12p^2 g^2 k^2 - 20k^3 pg + 10k^4 - 2p^3 g^3 k + 6p^2 g^2 k^2 - 4pg k^3 + 2p^2 g^2 k^2 - 6pg k^3 + 4k^4 \Big] = \frac{1}{g^9} \Big(p^4 g^4 - 10p^3 g^3 k + 30p^2 g^2 k^2 - 35pg k^3 + 14k^4 \Big).$$

то есть, с учетом обозначений (2.1.6), имеем

$$e = \frac{1}{E_b^9} \left[\left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}} \right)^4 E_b^4 + 10 \left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}} \right)^3 E_b^3 \frac{R_b}{\varepsilon_{b0}^2} + 30 \left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}} \right)^2 E_b^2 \left(\frac{R_b}{\varepsilon_{b0}^2} \right)^2 + 35 \left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}} \right) E_b \left(\frac{R_b}{\varepsilon_{b0}^2} \right)^3 + 14 \left(\frac{R_b}{\varepsilon_{b0}^2} \right)^4 \right].$$
(2.1.21)

Если в течение времени меняются показатели бетона

$$E_b = E_b(t), R_b = R_b(t)$$
 и $\varepsilon_{b0} = \varepsilon_{b0}(t),$

то соответственно будут меняться и коэффициенты

$$a = a(t), b = b(t), c = c(t), d = d(t)$$
 и $e = e(t)$.

В российских нормах проектирования СП 63.13330.2012 [119] в справочном приложении Г приводится криволинейная диаграмма деформирования бетона с ниспадающей ветвью (рис. 2.1.2).

Рис. 2.1.2. Диаграмма деформирования бетона при растяжении (*a*) и сжатии (*б*) по справочному приложению СП 63.13330.2012

Аналитическая зависимость, описывающая нелинейную диаграмму деформирования бетона (см. рис. 2.1.2), принимается в виде (формула Карпенко Н. И. [71]):

$$\varepsilon_b = \frac{\sigma_b}{E_b v_b},\tag{2.1.22}$$

где ε_b и σ_b – относительные деформации и напряжения в бетоне; E_b – начальный модуль упругости бетона; v_b – коэффициент изменения секущего модуля, равный

$$\mathbf{v}_b = \hat{\mathbf{v}}_b + (\mathbf{v}_0 - \hat{\mathbf{v}}_b)\sqrt{1 - \omega_1 \eta - \omega_2 \eta^2},$$

здесь \hat{v}_b – значение коэффициента изменения секущего модуля в вершине диаграммы при $\sigma_b = \hat{\sigma}_b$; $\hat{\sigma}_b$ – максимальное напряжение на диаграмме, равное $R_{b,ser}$; $R_{b,ser}$ – расчетное сопротивление бетона осевому сжатию для предельного состояния второй группы; v_0 – начальный коэффициент изменения секущего модуля (в начале диаграммы или в начале ее криволинейного отрезка); ω_1 и ω_2 – параметры кривизны диаграммы, $\omega_2 = 1 - \omega_1$; η – уровень загружения

$$(0 \le \eta \le 1), \ \eta = \frac{\sigma_b}{\hat{\sigma}_b}.$$

Для восходящей ветви диаграммы следует принимать коэффициенты $v_0 = 1$; $\omega_1 = 2 - 2,5 \hat{v}_b$, для нисходящей – $v_0 = 2,05 \hat{v}_b$; $\omega_1 = 1,95 \hat{v}_b - 0,138$.

Абсцисса вершины диаграммы осевого сжатия бетона определяется по формуле

$$\hat{\varepsilon}_{b} = -\frac{B}{E_{b}}\lambda \frac{1+0,75\lambda \frac{B}{60} + 0,2\frac{\lambda}{B}}{0,12 + \frac{B}{60} + \frac{0,2}{B}}$$

где В – класс бетона на сжатие; λ – безразмерный коэффициент, зависящий от вида бетона (для тяжелого и мелкозернистого бетона $\lambda = 1$).

Формула (2.1.22) достаточно точно описывает поведение нелинейного графика мгновенных деформаций (см. рис. 2.1.2), но ее применение в уравнениях ползучести возможно только после ее разложения в степенной ряд в виде (2.1.4) или (2.1.15) с определением соответствующих коэффициентов.

2.2. Расчет железобетонных элементов с учетом мгновенной нелинейности в рамках нелинейной теории старения бетона

Применение модифицированной теории старения в этом случае нецелесообразно, так как коэффициент $\alpha \neq 0$ имеет смысл только в моменты времени, близкие к моменту загружения. Это значит что коэффициент α не влияет на получение коэффициента ползучести ϕ_{∞} в условиях мгновенно-нелинейных деформаций, и следовательно, можно принять $\alpha = 0$.

Дифференцируя уравнение нелинейной теории старения для мгновенноупругого бетона (1.2.29), получаем

$$\dot{\varepsilon} = \frac{1}{E(t)}\dot{\sigma}_b + \frac{1}{E_0}\dot{\phi}_t f(\sigma_b), \qquad (2.2.1)$$

где функция $f(\sigma_b)$ определяется экспериментальным путем.

Структура уравнения ползучести теории старения бетона (2.2.1), отражая модель Максвелла, позволяет независимо друг от друга вводить функции нелинейности в первое и второе слагаемое уравнения (2.2.1), то есть отдельно выбирать закон для описания мгновенных деформаций $\varepsilon_{\rm M}$ и функцию напряжения $f(\sigma_b)$. Наиболее экспериментально изученной функцией $f(\sigma_b)$ является квадратная функция Арутюняна [6, 134, 135]:

$$f(\sigma_b) = \sigma_b + \beta \sigma_b^2. \qquad (2.2.2)$$

После подстановки функции (2.2.2) в уравнение (2.2.1), получим известное уравнение нелинейной теории старения:

$$\dot{\varepsilon} = \frac{1}{E(t)}\dot{\sigma}_b + \frac{1}{E_0}\dot{\phi}_t \left(\sigma_b + \beta\sigma_b^2\right).$$
(2.2.3)

Для учета мгновенной нелинейности бетона используем уравнение (2.1.15), которое введем вместо закона Гука в первое слагаемое уравнения (2.2.3):

$$\dot{\varepsilon} = \left(a\sigma_b + b\sigma_b^2 + c\sigma_b^3 + d\sigma_b^4 + e\sigma_b^5\right) + \frac{1}{E_0}\dot{\phi}_t\left(\sigma_b + \beta_1\sigma_b^2\right),$$

где *a*, *b*, *c*, *d* и *e* – коэффициенты, определяемые по отношениям (2.1.17) – (2.1.21); β₁ – параметр нелинейной ползучести.

Дифференцируя первое слагаемое, получим

$$\dot{\varepsilon} = \dot{a}\sigma_b + \dot{b}\sigma_b^2 + \dot{c}\sigma_b^3 + \dot{d}\sigma_b^4 + \dot{e}\sigma_b^5 + \left(a + 2b\,\sigma_b + 3c\,\sigma_b^2 + 4d\sigma_b^3 + 5e\sigma_b^4\right)\dot{\sigma}_b + \frac{1}{E_0}\dot{\phi}_t\left[\sigma_b + \beta_1\sigma_b^2\right]$$
(2.2.4)

либо

$$\dot{\varepsilon} = \left(a + 2b\,\sigma_b + 3c\,\sigma_b^2 + 4d\sigma_b^3 + 5e\sigma_b^4\right)\dot{\sigma}_b + \frac{1}{E_0}\dot{\phi}_t\left[\sigma_b + \beta_1\sigma_b^2\right].$$
(2.2.5)

Уравнения (2.2.4) и (2.2.5) – это уточнённое уравнение ползучести нелинейной теории старения бетона, которые устанавливают связь между деформациями и напряжениями и учитывают мгновенную нелинейность бетона в соответствии с требованием *Eurocode* 2.

Отметим аналогию выражения, стоящего в квадратных скобках уравнений (2.2.4) и (2.2.5), где коэффициент β₁ требует уточнения, и функции Арутюняна (2.2.2). Для удобства вычислений обозначим

$$\beta_1 = \Psi = \frac{b}{a} + \beta, \qquad (2.2.6)$$

где *а* и *b* – коэффициенты.

Рассмотрим задачу о сжатом железобетонном элементе, условие которой приведено стр. 14. Допущение об упругой работе арматуры позволяет записать уравнение

$$N = A_b \cdot \sigma_b + A_s \cdot E_s \cdot \varepsilon, \tag{2.2.7}$$

где N – действующая продольная сила; A и A_s – площади поперечного сечения бетона и арматуры; E_s – модуль упругости арматуры; σ_b – напряжения в бетоне; ε – продольные деформации сжатого элемента.

Дифференцируя уравнение (2.2.7), получим

$$A_b \dot{\sigma}_b + A_s E_s \dot{\varepsilon} = 0. \tag{2.2.8}$$

Из формулы (2.2.7) выразим соотношения для ε и σ_b :

$$\varepsilon = \frac{N}{A_s E_s} - \frac{A_b}{A_s E_s} \sigma_b, \qquad (2.2.9)$$

$$\sigma_b = \frac{N}{A_b} - \frac{A_s E_s}{A_b} \varepsilon. \tag{2.2.10}$$

Обозначим постоянные величины

$$X = \frac{N}{A_{s}E_{s}}, \quad W = \frac{A_{b}}{A_{s}E_{s}}, \quad L = \frac{N}{A_{b}}, \quad Z = \frac{A_{s}E_{s}}{A_{b}}, \quad (2.2.11)$$

тогда

$$\varepsilon = X - W\sigma_b; \tag{2.2.12}$$

$$\dot{\varepsilon} = -W \,\dot{\sigma}_b; \qquad (2.2.13)$$

$$\sigma_b = L - Z\varepsilon; \tag{2.2.14}$$

$$\dot{\sigma}_b = -Z\dot{\epsilon}. \tag{2.2.15}$$

Запишем систему дифференциальных уравнений

$$\begin{cases} \dot{\varepsilon} = \left(a + 2b\sigma_b + 3c\sigma_b^2 + 4d\sigma_b^3 + 5e\sigma_b^4\right)\dot{\sigma}_b + \frac{1}{E_0}\dot{\phi}_t\left(\Psi\sigma_b^2 + \sigma_b\right) \\ A_b\dot{\sigma}_b + A_sE_s\dot{\varepsilon} = 0 \end{cases}$$
(2.2.16)

Зададим начальные условия:

$$\varphi_t(0) = 0;$$
 (2.2.17)

$$\varepsilon(0) = \varepsilon_0; \qquad (2.2.18)$$

$$\sigma_b(0) = \sigma_{b0}.\tag{2.2.19}$$

В главе 3 приведен численный анализ результатов экспериментальных исследований, которые позволили сравнить данные, полученные с применением предложенных автором нелинейных моделей с учетом мгновенной нелинейности бетона, с данными, полученными на основе линейных моделей, построенных на законе Гука для мгновенных деформаций.

Для удобства обработки экспериментальных данных рассмотрим решение задачи относительно деформаций є.

Выпишем первое дифференциальное уравнение из системы (2.2.16), предварительно подставив в него выражения (2.2.14) для σ_b и (2.2.15) для $\dot{\sigma}_b$.

$$\dot{\varepsilon} + \left[a + 2b(L - Z\varepsilon) + 3c(L - Z\varepsilon)^{2} + 4d(L - Z\varepsilon)^{3} + 5e(L - Z\varepsilon)^{4}\right]Z\dot{\varepsilon} =$$
$$= \frac{1}{E_{0}}\dot{\varphi}_{t}\left[\Psi(L - Z\varepsilon)^{2} + (L - Z\varepsilon)\right],$$

Сгруппируем слагаемые с є́ в левой части уравнения и запишем последовательные преобразования

$$\frac{(1+aZ)+2bZ(L-Z\varepsilon)+3cZ(L-Z\varepsilon)^{2}+4dZ(L-Z\varepsilon)^{3}+5eZ(L-Z\varepsilon)^{4}}{\Psi(L-Z\varepsilon)^{2}+(L-Z\varepsilon)}\dot{\varepsilon}=\frac{1}{E_{0}}\dot{\varphi}_{t},$$

что тождественно

$$\left[\frac{(1+aZ)+2bZ(L-Z\varepsilon)}{(L-Z\varepsilon)[\Psi(L-Z\varepsilon)+1]} + \frac{3cZ(L-Z\varepsilon)^{2}}{(L-Z\varepsilon)[\Psi(L-Z\varepsilon)+1]} + \frac{4dZ(L-Z\varepsilon)^{3}}{(L-Z\varepsilon)[\Psi(L-Z\varepsilon)+1]} + \frac{5eZ(L-Z\varepsilon)^{4}}{(L-Z\varepsilon)[\Psi(L-Z\varepsilon)+1]}\right]\dot{\varepsilon} = \frac{1}{E_{0}}\dot{\phi}_{t}.$$

$$(2.2.20)$$

Преобразуем каждое слагаемое левой части уравнения (2.2.20):

1)
$$\frac{(1+aZ)+2bZ(L-Z\varepsilon)}{(L-Z\varepsilon)[\Psi(L-Z\varepsilon)+1]} = \frac{1+aZ}{L-Z\varepsilon} + \frac{2bZ-(1+aZ)\Psi}{\Psi(L-Z\varepsilon)+1} =$$

$$\begin{split} &\left(\frac{1+aZ}{-Z}\ln|L-Z\varepsilon|+\frac{\left[2bZ-(1+aZ)\Psi\right]\ln|\Psi(L-Z\varepsilon)+1\right]}{-\Psi Z}\right)^{*} = \\ &\left(-\frac{1+aZ}{Z}\ln|L-Z\varepsilon|+\left(-\frac{2bZ}{\Psi Z}+\frac{(1+aZ)\Psi}{\Psi Z}\right)\ln|\Psi(L-Z\varepsilon)+1|\right)^{*} = \\ &\left(-\frac{1+aZ}{Z}\ln|L-Z\varepsilon|+\left(\frac{1+aZ}{Z}-\frac{2b}{\Psi}\right)\ln|\Psi(L-Z\varepsilon)+1|\right)^{*}; \\ & 2) \frac{3cZ(L-Z\varepsilon)^{2}}{(L-Z\varepsilon)[\Psi(L-Z\varepsilon)+1]} = \frac{3cZ(L-Z\varepsilon)}{\Psi(L-Z\varepsilon)+1} = 3cZ\frac{\frac{1}{\Psi}[\Psi(L-Z\varepsilon)+1]-\frac{1}{\Psi}}{\Psi(L-Z\varepsilon)+1} = \\ &= \frac{3cZ}{\Psi} - \frac{3cZ}{\Psi[\Psi(L-Z\varepsilon)+1]} = \left(\frac{3cZ}{\Psi}\varepsilon + \frac{3c}{\Psi^{2}}\ln|\Psi(L-Z\varepsilon)+1|\right)^{*}; \\ & 3) \frac{4dZ(L-Z\varepsilon)^{3}}{(L-Z\varepsilon)[\Psi(L-Z\varepsilon)+1]} = \frac{4dZ(L-Z\varepsilon)^{2}}{\Psi(L-Z\varepsilon)+1} = 4dZ\frac{\left[\frac{1}{\Psi}[\Psi(L-Z\varepsilon)+1]-\frac{1}{\Psi}\right]^{2}}{\Psi(L-Z\varepsilon)+1} = \end{split}$$

$$=4dZ\frac{\frac{1}{\Psi^{2}}\left[\Psi\left(L-Z\varepsilon\right)+1\right]^{2}-\frac{2}{\Psi^{2}}\left[\Psi\left(L-Z\varepsilon\right)+1\right]+\frac{1}{\Psi^{2}}}{\Psi\left(L-Z\varepsilon\right)+1}=$$

$$\begin{split} &= \frac{4dZ}{\Psi^2} \bigg((\Psi(L-Z_{\mathcal{E}})+1)-2+\frac{1}{\Psi(L-Z_{\mathcal{E}})+1} \bigg) = \frac{4dZ}{\Psi^2} \bigg(\Psi L - \Psi Z_{\mathcal{E}} - 1+\frac{1}{\Psi(L-Z_{\mathcal{E}})+1} \bigg) = \\ &= \frac{4dZ}{\Psi} \bigg(L - \frac{1}{\Psi} \bigg) - \frac{4dZ^2}{\Psi} \varepsilon + \frac{4dZ}{\Psi^2} \frac{1}{\Psi(L-Z_{\mathcal{E}})+1} = \\ &= \bigg[\frac{4dZ}{\Psi} \bigg(L - \frac{1}{\Psi} \bigg) \varepsilon - \frac{4dZ^2}{\Psi} \varepsilon^2 + \frac{4dZ}{\Psi^2} \ln |\Psi(L-Z_{\mathcal{E}})+1| \bigg(-\frac{1}{\Psi Z} \bigg) \bigg]^{'} = \\ &= \bigg[\frac{4dZ}{\Psi} \bigg(L - \frac{1}{\Psi} \bigg) \varepsilon - \frac{2dZ^2}{\Psi} \varepsilon^2 - \frac{4d}{\Psi^3} \ln |\Psi(L-Z_{\mathcal{E}})+1| \bigg]^{'} ; \\ &\quad 4) \frac{5eZ(L-Z_{\mathcal{E}})^4}{(L-Z_{\mathcal{E}})(\Psi(L-Z_{\mathcal{E}})+1)} = \frac{5eZ(L-Z_{\mathcal{E}})^3}{\Psi(L-Z_{\mathcal{E}})+1} = 5eZ \frac{\bigg[\frac{1}{\Psi} (\Psi(L-Z_{\mathcal{E}})+1) - \frac{1}{\Psi} \bigg]^3}{\Psi(L-Z_{\mathcal{E}})+1} = \\ &= 5eZ \frac{\frac{1}{\Psi^3} [\Psi(L-Z_{\mathcal{E}})+1]^3 - 3\frac{1}{\Psi^2} [\Psi(L-Z_{\mathcal{E}})+1]^2 \frac{1}{\Psi} + 3\frac{1}{\Psi} [\Psi(L-Z_{\mathcal{E}})+1] \frac{1}{\Psi^2} - \frac{1}{\Psi^3}} = \\ &= 5eZ \bigg[\frac{1}{\Psi^3} [\beta(L-Z_{\mathcal{E}})+1]^3 - 3\frac{1}{\Psi^3} [\beta(L-Z_{\mathcal{E}})+1] + \frac{3}{\Psi^3} - \frac{1}{\Psi^3} [\Psi(L-Z_{\mathcal{E}})+1] \bigg] = \\ &= 5eZ \bigg[\frac{1}{\Psi^3} [\beta(L-Z_{\mathcal{E}})+1]^2 - \frac{3}{\Psi^3} [\beta(L-Z_{\mathcal{E}})+1] + \frac{3}{\Psi^3} - \frac{1}{\Psi^3} [\Psi(L-Z_{\mathcal{E}})+1] \bigg] = \\ &= 5eZ \bigg[\frac{1}{\Psi^3} [\beta(L-Z_{\mathcal{E}})+2\Psi(L-Z_{\mathcal{E}})+1 - 3\Psi(L-Z_{\mathcal{E}}) - 3 + 3 - \frac{1}{\Psi(L-Z_{\mathcal{E}})+1} \bigg] = \\ &= \frac{5eZ}{\Psi^3} \bigg[\Psi^2 (L^2 - 2\Psi^2 L Z_{\mathcal{E}} + \Psi^2 Z^2 \varepsilon^2 + 2\Psi L - 2\Psi Z_{\mathcal{E}} + 1 - 3\Psi Z_{\mathcal{E}} - \frac{1}{\Psi^2} [\Psi(L-Z_{\mathcal{E}})+1] \bigg] = \\ &= \frac{5eZ}{\Psi} \bigg[L^2 - 2L Z_{\mathcal{E}} + Z^2 \varepsilon^2 + \frac{2L}{\Psi} - \frac{2Z}{\Psi} \varepsilon + \frac{1}{\Psi^2} - \frac{3L}{\Psi} - \frac{3Z}{\Psi} \varepsilon - \frac{1}{\Psi^2} [\Psi(L-Z_{\mathcal{E}})+1] \bigg] = \\ &= \frac{5eZ}{\Psi} \bigg[L^2 - 2L Z_{\mathcal{E}} + Z^2 \varepsilon^2 + \frac{2L}{\Psi} - \frac{2Z}{\Psi} \varepsilon + \frac{1}{\Psi^2} - \frac{3L}{\Psi} - \frac{3Z}{\Psi} \varepsilon - \frac{1}{\Psi^2} [\Psi(L-Z_{\mathcal{E}})+1] \bigg] = \\ &= \frac{5eZ}{\Psi} \bigg[L^2 - 2L Z_{\mathcal{E}} + Z^2 \varepsilon^2 + \frac{2L}{\Psi} - \frac{2Z}{\Psi} \varepsilon + \frac{5eZ^3}{\Psi} \varepsilon^2 - \frac{5eZ^3}{\Psi^3} \varepsilon^3 - \frac{5eZ}{\Psi^3} \ln |\Psi(L-Z_{\mathcal{E}})+1| \bigg] = \\ &= \bigg[\frac{5eZ}{\Psi} \bigg(L^2 - \frac{L}{\Psi} + \frac{1}{\Psi^2} \bigg) \varepsilon - \frac{5eZ^2}{\Psi} \bigg(2L + \frac{5}{\Psi} \bigg) \varepsilon^2 + \frac{5eZ^3}{\Psi^3} \varepsilon^3 - \frac{5eZ}{\Psi^3} \ln |\Psi(L-Z_{\mathcal{E}})+1| \bigg(- \frac{1}{\Psi_Z} \bigg) \bigg]^{'} = \\ &= \bigg[\frac{5eZ}{\Psi} \bigg(L^2 - \frac{L}{\Psi} + \frac{1}{\Psi^2} \bigg) \varepsilon - \frac{5eZ^2}{2\Psi} \bigg(2L + \frac{5}{\Psi} \bigg) \varepsilon^2 + \frac{5eZ^3}{3\Psi} \varepsilon^3 - \frac{5eZ}{\Psi^3} \ln |\Psi(L-Z_{\mathcal{E}})+1| \bigg] \bigg] \cdot \bigg]$$

Подставим полученные результаты в уравнение (2.2.20):

$$\left(-\frac{1+aZ}{Z} \ln \left| L - Z\epsilon \right| + \left(\frac{1+aZ}{Z} - \frac{2b}{\Psi} \right) \ln \left| \Psi \left(L - Z\epsilon \right) + 1 \right| + \frac{3cZ}{\Psi} \epsilon + \frac{3c}{\Psi^2} \ln \left| \Psi \left(L - Z\epsilon \right) + 1 \right| + \frac{4dZ}{\Psi} \left(L - \frac{1}{\Psi} \right) \epsilon - \frac{2dZ^2}{\Psi} \epsilon^2 - \frac{4d}{\Psi^3} \ln \left| \Psi \left(L - Z\epsilon \right) + 1 \right| + \frac{5eZ}{\Psi} \left(L^2 - \frac{L}{\Psi} + \frac{1}{\Psi^2} \right) \epsilon - \frac{5eZ^2}{2\Psi} \left(2L + \frac{5}{\Psi} \right) \epsilon^2 + \frac{5eZ^3}{3\Psi} \epsilon^3 + \frac{5e}{\Psi^4} \ln \left| \Psi \left(L - Z\epsilon \right) + 1 \right| \right)^2 = \left(\frac{1}{E_0} \varphi_t \right)^2,$$

ИЛИ

$$\begin{split} \left(-\frac{1+aZ}{Z}\ln\left|L-Z\epsilon\right| + \left(\frac{1+aZ}{Z}-\frac{2b}{\Psi}+\frac{3c}{\Psi^2}-\frac{4d}{\Psi^3}+\frac{5e}{\Psi^4}\right)\ln\left|\Psi\left(L-Z\epsilon\right)+1\right| + \\ + \frac{Z}{\Psi}\left[3c+4d\left(L-\frac{1}{\Psi}\right)+5e\left(L^2-\frac{L}{\Psi}+\frac{1}{\Psi^2}\right)\right]\epsilon - \\ - \frac{Z^2}{\Psi}\left[2d+\frac{5e}{2}\left(2L+\frac{5}{\Psi}\right)\right]\epsilon^2 + \frac{5eZ^3}{3\Psi}\epsilon^3\right) = \left(\frac{1}{E_0}\varphi_t\right). \end{split}$$

Интегрируя, получим

$$\begin{aligned} -\frac{1+aZ}{Z}\ln|L-Z\varepsilon| + \left(\frac{1+aZ}{Z} - \frac{2b}{\Psi} + \frac{3c}{\Psi^2} - \frac{4d}{\Psi^3} + \frac{5e}{\Psi^4}\right)\ln|\Psi(L-Z\varepsilon) + 1| + \\ + \frac{Z}{\Psi}\left[3c + 4d\left(L - \frac{1}{\Psi}\right) + 5e\left(L^2 - \frac{L}{\Psi} + \frac{1}{\Psi^2}\right)\right]\varepsilon - \\ - \frac{Z^2}{\Psi}\left[2d + \frac{5e}{2}\left(2L + \frac{5}{\Psi}\right)\right]\varepsilon^2 + \frac{5eZ^3}{3\Psi}\varepsilon^3 = \frac{1}{E_0}\varphi_t + C, \end{aligned}$$

где С – постоянная, определяемая из начальных условий.

Подставим начальные условия (2.2.17) и (2.2.18) и найдем значение постоянной С:

$$C = -\frac{1+aZ}{Z}\ln\left|L-Z\varepsilon_{0}\right| + \left(\frac{1+aZ}{Z} - \frac{2b}{\Psi} + \frac{3c}{\Psi^{2}} - \frac{4d}{\Psi^{3}} + \frac{5e}{\Psi^{4}}\right)\ln\left|\Psi\left(L-Z\varepsilon_{0}\right) + 1\right| + \frac{Z}{\Psi}\left[3c + 4d\left(L-\frac{1}{\Psi}\right) + 5e\left(L^{2} - \frac{L}{\Psi} + \frac{1}{\Psi^{2}}\right)\right]\varepsilon_{0} - \frac{Z^{2}}{\Psi}\left[2d + \frac{5e}{2}\left(2L + \frac{5}{\Psi}\right)\right]\varepsilon_{0}^{2} + \frac{5eZ^{3}}{3\Psi}\varepsilon_{0}^{3} + \frac{5eZ^{3}}{3\Psi}\varepsilon_{0}^{3} + \frac{5eZ^{3}}{2\Psi}\varepsilon_{0}^{3}\right]$$

Таким образом, окончательно получим

$$\varphi_{t} = E_{0} \left[-\frac{1+aZ}{Z} \ln \left| \frac{L-Z\varepsilon}{L-Z\varepsilon_{0}} \right| + \left(\frac{1+aZ}{Z} - \frac{2b}{\Psi} + \frac{3c}{\Psi^{2}} - \frac{4d}{\Psi^{3}} + \frac{5e}{\Psi^{4}} \right) \ln \left| \frac{\Psi(L-Z\varepsilon) + 1}{\Psi(L-Z\varepsilon_{0}) + 1} \right| + \frac{Z}{\Psi} \left[3c + 4d \left(L - \frac{1}{\Psi} \right) + 5e \left(L^{2} - \frac{L}{\Psi} + \frac{1}{\Psi^{2}} \right) \right] (\varepsilon - \varepsilon_{0}) - \left(2.2.21 \right) - \frac{Z^{2}}{\Psi} \left[2d + \frac{5e}{2} \left(2L + \frac{5}{\Psi} \right) \right] (\varepsilon^{2} - \varepsilon_{0}^{2}) + \frac{5eZ^{3}}{3\Psi} (\varepsilon^{3} - \varepsilon_{0}^{3}),$$

где L и Z – коэффициенты, определяемые по соотношениям (2.2.11).

Решим систему (2.2.16) относительно напряжений в бетоне σ_b .

Выпишем отдельно первое уравнение системы (2.2.16), предварительно подставив в него выражение (2.2.13) для έ:

$$-W\dot{\sigma}_{b} = \left(a + 2b\sigma_{b} + 3c\sigma_{b}^{2} + 4d\sigma_{b}^{3} + 5e\sigma_{b}^{4}\right)\dot{\sigma}_{b} + \frac{1}{E_{0}}\dot{\phi}_{t}\left(\Psi\sigma_{b}^{2} + \sigma_{b}\right).$$

Перенесем слагаемые содержащие множитель $\dot{\sigma}_b$ в левую часть уравнения и запишем последовательные преобразования

$$\frac{(W+a)+2b\sigma_{b}+3c\sigma_{b}^{2}+4d\sigma_{b}^{3}+5e\sigma_{b}^{4}}{\Psi\sigma_{b}^{2}+\sigma_{b}}\dot{\sigma}_{b}=-\frac{1}{E_{0}}\dot{\phi}_{t},$$

$$\begin{bmatrix} W+a\\ \sigma_{b}(\Psi\sigma_{b}+1) + \frac{2b\sigma_{b}}{\sigma_{b}(\Psi\sigma_{b}+1)} + \frac{3c\sigma_{b}^{2}}{\sigma_{b}(\Psi\sigma_{b}+1)} + \frac{4d\sigma_{b}^{3}}{\sigma_{b}(\Psi\sigma_{b}+1)} + \frac{5e\sigma_{b}^{4}}{\sigma_{b}(\Psi\sigma_{b}+1)} \end{bmatrix}\dot{\sigma}_{b}=-\frac{1}{E_{0}}\dot{\phi}_{t},$$

$$\begin{bmatrix} (W+a)\frac{1}{\sigma_{b}(\Psi\sigma_{b}+1)} + \frac{2b}{\Psi\sigma_{b}+1} + \frac{3c\sigma_{b}}{\Psi\sigma_{b}+1} + \frac{4d\sigma_{b}^{2}}{\Psi\sigma_{b}+1} + \frac{5e\sigma_{b}^{3}}{\Psi\sigma_{b}+1} \end{bmatrix}\dot{\sigma}_{b}=-\frac{1}{E_{0}}\dot{\phi}_{t}.$$
(2.2.22)

Преобразуем каждое слагаемое левой части уравнения (2.2.22):

1)
$$(W+a)\frac{1}{\sigma_b(\Psi\sigma_b+1)} = (W+a)\left(\frac{1}{\sigma_b} - \frac{\Psi}{\Psi\sigma_b+1}\right) = \left[(W+a)\ln|\sigma_b| - (W+a)\ln|\Psi\sigma_b+1|\right];$$

2)
$$\frac{2b}{\Psi\sigma_{b}+1} = \left[\frac{2b}{\Psi}\ln|\Psi\sigma_{b}+1|\right]^{2};$$

3)
$$\frac{3c\sigma_{b}}{\Psi\sigma_{b}+1} = \frac{3c\Psi(\Psi\sigma_{b}+1)-3c\Psi}{\Psi^{2}(\Psi\sigma_{b}+1)} = \frac{3c\Psi(\Psi\sigma_{b}+1)}{\Psi^{2}(\Psi\sigma_{b}+1)} - \frac{3c\Psi}{\Psi^{2}(\Psi\sigma_{b}+1)} =$$

$$\begin{split} &= \frac{3c}{\Psi} - \frac{3c}{\Psi(\Psi\sigma_{b}+1)} = \left[\frac{3c}{\Psi}\sigma_{b} - \frac{3c}{\Psi^{2}}\ln|\Psi\sigma_{b}+1|\right]^{2}; \\ &\quad 4) \frac{4d\sigma_{b}^{2}}{\Psi\sigma_{b}+1} = 4d \frac{\left[\frac{1}{\Psi}(\Psi\sigma_{b}+1) - \frac{1}{\Psi}\right]^{2}}{\Psi\sigma_{b}+1} = 4d \frac{\Psi^{2}(\Psi\sigma_{b}+1)^{2} - \frac{2}{\Psi^{2}}(\Psi\sigma_{b}+1) + \frac{1}{\Psi^{2}}}{\Psi\sigma_{b}+1} = \\ &= \frac{4d}{\Psi^{2}}\left(\frac{(\Psi\sigma_{b}+1)[(\Psi\sigma_{b}+1) - 2]}{\Psi\sigma_{b}+1} + \frac{1}{\Psi\sigma_{b}+1}\right) = \frac{4d}{\Psi^{2}}(\Psi\sigma_{b}-1) + \frac{4d}{\Psi^{2}(\Psi\sigma_{b}+1)} = \\ &= \frac{4d}{\Psi}\sigma_{b} - \frac{4d}{\Psi^{2}} + \frac{4d}{\Psi^{2}(\Psi\sigma_{b}+1)} = \left[\frac{4d}{\Psi}\frac{\sigma_{b}^{2}}{2} - \frac{4d}{\Psi^{2}}\sigma_{b} + \frac{4d}{\Psi^{2}}\frac{\ln|\Psi\sigma_{b}+1|}{\Psi}\right]^{2} = \\ &= \left[\frac{2d}{\Psi}\sigma_{b}^{2} - \frac{4d}{\Psi^{2}}\sigma_{b} + \frac{4d}{\Psi^{3}}\ln|\Psi\sigma_{b}+1|\right]^{2}; \\ &\quad 5) \quad 5e\frac{\sigma_{b}^{3}}{\Psi\sigma_{b}+1} = 5e^{\left[\frac{1}{\Psi}(\Psi\sigma_{b}+1) - \frac{1}{\Psi}\right]^{3}}{\Psi\sigma_{b}+1} = \\ &= 5e\frac{\frac{1}{\Psi^{3}}(\Psi\sigma_{b}+1)^{3} - \frac{3}{\Psi^{2}}(\Psi\sigma_{b}+1)^{2}\frac{1}{\Psi} + \frac{3}{\Psi}(\Psi\sigma_{b}+1)\frac{1}{\Psi^{2}} - \frac{1}{\Psi^{3}}}{\Psi\sigma_{b}+1} = \\ &= \frac{5e}{\Psi^{3}}\left(\frac{(\Psi\sigma_{b}+1)[(\Psi\sigma_{b}+1)^{2} - 3(\Psi\sigma_{b}+1) + 3]}{\Psi\sigma_{b}+1} - \frac{1}{\Psi\sigma_{b}+1}\right) = \\ &= \frac{5e}{\Psi^{3}}\left(\Psi^{2}\sigma_{b}^{2} + 2\Psi\sigma_{b}+1 - 3\Psi\sigma_{b}-3 + 3 - \frac{1}{\Psi\sigma_{b}+1}\right) = \\ &= \frac{5e}{\Psi^{3}}\left(\Psi^{2}\sigma_{b}^{2} - 2\Psi\sigma_{b}+1 - 3\Psi\sigma_{b}-3 + 3 - \frac{1}{\Psi\sigma_{b}+1}\right) = \\ &= \frac{5e}{\Psi}\sigma_{b}^{2} - \frac{5e}{\Psi^{2}}\sigma_{b} + \frac{5e}{\Psi^{3}} - \frac{5e}{\Psi^{3}}(\Psi\sigma_{b}+1) = \left[\frac{5e}{3\Psi}\sigma_{b}^{3} - \frac{5e}{2\Psi^{2}}\sigma_{b}^{2} + \frac{5e}{\Psi^{3}}\sigma_{b} - \frac{5e}{\Psi^{4}}\ln|\beta\sigma_{b}+1|\right]^{2}. \end{split}$$

Подставляя полученные результаты в уравнение (2.2.22), имеем $\begin{bmatrix} (W+a)\ln|\sigma_b| - (W+a)\ln|\Psi\sigma_b + 1| + \frac{2b}{\Psi}\ln|\Psi\sigma_b + 1| + \frac{3c}{\Psi}\sigma_b - \frac{3c}{\Psi^2}\ln|\Psi\sigma_b + 1| + \frac{2d}{\Psi}\sigma_b^2 - \frac{4d}{\Psi^2}\sigma_b + \frac{4d}{\Psi^2}\sigma_b + \frac{4d}{\Psi^3}\ln|\Psi\sigma_b + 1| + \frac{5e}{3\Psi}\sigma_b^3 - \frac{5e}{2\Psi^2}\sigma_b^2 + \frac{5e}{\Psi^3}\sigma_b - \frac{5e}{\Psi^4}\ln|\beta\sigma_b + 1| \end{bmatrix} \cdot = \left(-\frac{1}{E_0}\phi_t\right) \cdot,$ что тождественно

$$\begin{bmatrix} (W+a)\ln|\sigma_b| - \left(W+a - \frac{2b}{\Psi} + \frac{3c}{\Psi^2} - \frac{4d}{\Psi^3} + \frac{5e}{\Psi^4}\right)\ln|\Psi\sigma_b + 1| + \\ + \left(\frac{3c}{\Psi} - \frac{4d}{\Psi^2} + \frac{5e}{\Psi^3}\right)\sigma_b + \left(\frac{2d}{\Psi} - \frac{5e}{2\Psi^2}\right)\sigma_b^2 + \frac{5e}{3\Psi}\sigma_b^3 \end{bmatrix} = \left(-\frac{1}{E_0}\phi_t\right)^2$$

Интегрируя, получим

$$(W+a)\ln|\sigma_b| - \left(W+a - \frac{2b}{\Psi} + \frac{3c}{\Psi^2} - \frac{4d}{\Psi^3} + \frac{5e}{\Psi^4}\right)\ln|\Psi\sigma_b + 1| + \left(\frac{3c}{\Psi} - \frac{4d}{\Psi^2} + \frac{5e}{\Psi^3}\right)\sigma_b + \left(\frac{2d}{\Psi} - \frac{5e}{2\Psi^2}\right)\sigma_b^2 + \frac{5e}{3\Psi}\sigma_b^3 = -\frac{1}{E_0}\phi_t + C,$$

где С – постоянная, определяемая из начальных условий.

Подставим начальные условия (2.2.17) и (2.2.19) и найдем значение постоянной *C*:

$$C = (W+a)\ln|\sigma_{b0}| - \left(W+a - \frac{2b}{\Psi} + \frac{3c}{\Psi^2} - \frac{4d}{\Psi^3} + \frac{5e}{\Psi^4}\right)\ln|\Psi\sigma_{b0} + 1| + \left(\frac{3c}{\Psi} - \frac{4d}{\Psi^2} + \frac{5e}{\Psi^3}\right)\sigma_{b0} + \left(\frac{2d}{\Psi} - \frac{5e}{2\Psi^2}\right)\sigma_{b0}^2 + \frac{5e}{3\Psi}\sigma_{b0}^3.$$

Таким образом, окончательно получим

$$\varphi_{t} = E_{0} \bigg[(W+a) \ln \bigg| \frac{\sigma_{b0}}{\sigma_{b}} \bigg| - \bigg(W+a - \frac{2b}{\Psi} + \frac{3c}{\Psi^{2}} - \frac{4d}{\Psi^{3}} + \frac{5e}{\Psi^{4}} \bigg) \ln \bigg| \frac{\Psi \sigma_{b0} + 1}{\Psi \sigma_{b} + 1} \bigg| + \bigg(\frac{3c}{\Psi} - \frac{4d}{\Psi^{2}} + \frac{5e}{\Psi^{3}} \bigg) (\sigma_{b0} - \sigma_{5}) + \bigg(\frac{2d}{\Psi} - \frac{5e}{2\Psi^{2}} \bigg) (\sigma_{b0}^{2} - \sigma_{b}^{2}) + \frac{5e}{3\Psi} (\sigma_{b0}^{3} - \sigma_{b}^{3}) \bigg],$$

$$(2.2.23)$$

где W – коэффициент, определяемый по отношению (2.2.11).

Учитывая, что напряжения в сжатом железобетонном элементе не могут быть отрицательными и равными нулю $\sigma_{b0} > 0$, $\sigma_b > 0$ раскроем модуль:

$$\varphi_{t} = E_{0} \bigg[(W+a) \ln \bigg(\frac{\sigma_{b0}}{\sigma_{b}} \bigg) - \bigg(W+a - \frac{2b}{\Psi} + \frac{3c}{\Psi^{2}} - \frac{4d}{\Psi^{3}} + \frac{5e}{\Psi^{4}} \bigg) \ln \bigg(\frac{\Psi \sigma_{b0} + 1}{\Psi \sigma_{b} + 1} \bigg) + \\ + \bigg(\frac{3c}{\Psi} - \frac{4d}{\Psi^{2}} + \frac{5e}{\Psi^{3}} \bigg) (\sigma_{b0} - \sigma_{b}) + \bigg(\frac{2d}{\Psi} - \frac{5e}{2\Psi^{2}} \bigg) (\sigma_{b0}^{2} - \sigma_{b}^{2}) + \frac{5e}{3\Psi} (\sigma_{b0}^{3} - \sigma_{b}^{3}) \bigg].$$

$$(2.2.24)$$

$$+\left(\frac{3c}{\Psi}-\frac{4d}{\Psi^2}+\frac{5e}{\Psi^3}\right)\left(\sigma_{b0}-\sigma_b\right)+\left(\frac{2d}{\Psi}-\frac{5e}{2\Psi^2}\right)\left(\sigma_{b0}^2-\sigma_b^2\right)+\frac{5e}{3\Psi}\left(\sigma_{b0}^3-\sigma_b^3\right)\right]$$

Для упрощения полученных выражений можно ограничиться применением четырех, трех или двух слагаемых формулы (2.1.15). Для этого необходимо приравнять нулю соответствующие коэффициенты.

В частности, при коэффициенте *e* = 0, уравнения (2.2.21) и (2.2.24) примут вид:

$$\begin{split} \varphi_{t} &= E_{0} \Biggl[-\frac{1+aZ}{Z} \ln \left| \frac{L-Z\epsilon}{L-Z\epsilon_{0}} \right| + \left(\frac{1+aZ}{Z} - \frac{2b}{\Psi} + \frac{3c}{\Psi^{2}} - \frac{4d}{\Psi^{3}} \right) \ln \left| \frac{\Psi(L-Z\epsilon) + 1}{\Psi(L-Z\epsilon_{0}) + 1} \right| + \\ &+ \frac{Z}{\Psi} \Biggl[3c + 4d \left(L - \frac{1}{\Psi} \right) \Biggr] (\epsilon - \epsilon_{0}) - \frac{2dZ^{2}}{\Psi} (\epsilon^{2} - \epsilon_{0}^{2}), \end{split}$$
(2.2.25)
$$\varphi_{t} &= E_{0} \Biggl[(W+a) \ln \Biggl(\frac{\sigma_{b0}}{\sigma_{b}} \Biggr) - \Biggl(W + a - \frac{2b}{\Psi} + \frac{3c}{\Psi^{2}} - \frac{4d}{\Psi^{3}} \Biggr) \ln \Biggl(\frac{\Psi\sigma_{b0} + 1}{\Psi\sigma_{b} + 1} \Biggr) + \\ &+ \Biggl(\frac{3c}{\Psi} - \frac{4d}{\Psi^{2}} \Biggr) (\sigma_{b0} - \sigma_{b}) + \frac{2d}{\Psi} (\sigma_{b0}^{2} - \sigma_{b}^{2}) \Biggr]. \end{split}$$
(2.2.26)

При коэффициентах e = 0 и d = 0, из уравнений (2.2.21) и (2.2.24) имеем:

$$\varphi_{t} = E_{0} \left[-\frac{1+aZ}{Z} \ln \left| \frac{L-Z\varepsilon}{L-Z\varepsilon_{0}} \right| + \left(\frac{1+aZ}{Z} - \frac{2b}{\Psi} + \frac{3c}{\Psi^{2}} \right) \ln \left| \frac{\Psi(L-Z\varepsilon) + 1}{\Psi(L-Z\varepsilon_{0}) + 1} \right| + \frac{3cZ}{\Psi} (\varepsilon - \varepsilon_{0}) \right], \quad (2.2.27)$$

$$\varphi_{t} = E \left[(W_{t} + a) \ln \left(\sigma_{b0} \right) - \left(W_{t} + a - \frac{2b}{\Psi} + \frac{3c}{\Psi^{2}} \right) \ln \left(\Psi \sigma_{b0} + 1 \right) + \frac{3c}{\Psi} (\varepsilon - \varepsilon_{0}) \right], \quad (2.2.27)$$

$$\varphi_{t} = E_{0} \left[(W+a) \ln \left(\frac{b0}{\sigma_{b}} \right) - \left[W+a - \frac{W}{\Psi} + \frac{W^{2}}{\Psi^{2}} \right] \ln \left(\frac{b0}{\Psi\sigma_{b} + 1} \right) + \frac{W}{\Psi} (\sigma_{b0} - \sigma_{b}) \right].$$
(2.2.28)

В варианте когда диаграмма мгновенной нелинейности бетона описывается первыми двумя членами ряда (2.1.15), тогда в итоге получим

$$\varphi_{t} = E_{0} \left[-\frac{1+aZ}{Z} \ln \left| \frac{L-Z\varepsilon}{L-Z\varepsilon_{0}} \right| + \left(\frac{1+aZ}{Z} - \frac{2b}{\Psi} \right) \ln \left| \frac{\Psi(L-Z\varepsilon) + 1}{\Psi(L-Z\varepsilon_{0}) + 1} \right| \right], \qquad (2.2.29)$$

$$\varphi_t = E_0 \left[\left(W + a \right) \ln \left(\frac{\sigma_{b0}}{\sigma_b} \right) - \left(W + a - \frac{2b}{\Psi} \right) \ln \left(\frac{\Psi \sigma_{b0} + 1}{\Psi \sigma_b + 1} \right) \right].$$
(2.2.30)

Аналогичным образом строятся решения при применении уравнения (2.2.4). Для формулы, сравнительного анализа приведем связывающие характеристику ползучести либо с деформациями железобетона Φ_t Е, либо нелинейной напряжениями бетоне полученные С В σ_b , В

старения теории использованием закона Гука С для мгновенных деформаций решении при совместном В системе уравнений формул (2.2.3) и (2.2.8):

$$\varphi_t = E_0 \left[-\frac{1+aZ}{Z} \ln \left| \frac{L-Z\varepsilon}{L-Z\varepsilon_0} \right| + \frac{1+aZ}{Z} \ln \left| \frac{\beta(L-Z\varepsilon)+1}{\beta(L-Z\varepsilon_0)+1} \right| \right], \quad (2.2.31)$$

$$\varphi_t = E_0 \left[(W+a) \ln \left(\frac{\sigma_{b0}}{\sigma_b} \right) - (W+a) \ln \left(\frac{\beta \sigma_{b0} + 1}{\beta \sigma_b + 1} \right) \right].$$
(2.2.32)

Из уравнения (2.2.32) выразим напряжения в бетоне о_b:

$$\sigma_b = \frac{\sigma_{b0}}{e^{\frac{\varphi_t}{E_0(W+a)}} (\beta \sigma_{b0} + 1) - \beta \sigma_{b0}}, \qquad (2.2.33)$$

где $a = \frac{1}{E(t)}$; *W* – постоянный коэффициент, определяемый по формуле (2.2.11);

 ϕ_t – характеристика ползучести бетона, определяемая функцией

$$\varphi_t = \varphi_{\infty} \left(1 - e^{-\gamma t} \right), \tag{2.2.34}$$

здесь γ − опытный постоянный коэффициент, γ = 0,03 [6]; φ_∞ − предельная характеристика ползучести (коэффициент ползучести).

Формула (2.2.33) с учетом подстановки функции (2.2.34) примет вид

$$\sigma_{b} = \frac{\sigma_{b0}}{e^{\frac{\varphi_{\infty}(1-e^{-\gamma t})}{E_{0}(W+a)}} (\beta \sigma_{b0} + 1) - \beta \sigma_{b0}}.$$
(2.2.35)

При $\beta = 0$ из уравнения (2.2.35) имеем

$$\sigma_b = \frac{\sigma_{b0}}{\rho^{\frac{\varphi_{\infty}(1-e^{-\gamma t})}{E_0(W+a)}}}.$$
(2.2.36)

Если рассматривается линейная ползучесть, то уравнение линейной теории старения при учете мгновенной нелинейности бетона записывается в виде:

$$\dot{\varepsilon} = \left(a + 2b\,\sigma_b + 3c\,\sigma_b^2 + 4d\sigma_b^3 + 5e\sigma_b^4\right)\dot{\sigma}_b + \frac{1}{E_0}\dot{\phi}_t\sigma_b\,. \tag{2.2.37}$$

Отметим важные преимущества применения теории старения бетона для исследования изменения напряжений в бетоне и деформаций в о времени с учетом мгновенной нелинейности бетона и нелинейной ползучести:

• дифференциальные уравнения позволяют получить разрешающие уравнения для определения напряжений и деформаций в бетоне и арматуре;

• постоянные коэффициенты *a*, *b*, *c*, *d* и *e*, входящие в слагаемые правой части функции (2.1.15), сохраняются в процессе решения, благодаря чему обеспечивается математическая связь с формулой *Eurocode* 2 и учитываются нелинейные свойства бетона, в том числе касательный модуль деформаций;

• характеристики бетона и арматуры, которые содержатся в слагаемых дифференциальных уравнений, могут быть либо с достаточной точностью получены экспериментально, либо позаимствованы из имеющейся нормативной литературы;

 расчетный аппарат теории старения позволяет получить в явном виде выражение для характеристики ползучести бетона с учетом мгновенных нелинейных свойств бетона;

• полученные в главе 3 экспериментальные данные (см. раздел 3.8) показали, что уточенная нелинейная теория старения позволяет снижать погрешность расчетов до 16 %.

2.3. Расчет железобетонных элементов при совместном учете мгновенной нелинейности и ползучести бетона на основе теории упруго-ползучего тела

В теории упруго-ползучего тела и упругой наследственности бетона для учета нелинейной зависимости между мгновенными деформациями и напряжениями используем метод, основанный на использовании функции $\Phi(\sigma_b)$. Этот метод развивает идеи Работнова Ю. Н., Бондаренко В. М., Качанова Л. М., Ржаницына А. Р. и характерен следующей идеей: вместо напряжения σ_b в качестве новой переменной вводится новая функция напряжения $\Phi(\sigma_b)$, которая обладает всеми свойствами напряжения σ_b , в том числе и размерностью.

Уравнение линейной теории упруго-ползучего тела при переменном модуле упругости бетона (1.2.13) после введения функции $\Phi(\sigma_b)$ имеет вид:

$$\left[\Phi(\sigma_b)\right]^{\cdot\cdot} + \left(\gamma - \frac{\dot{E}}{E^2} + \gamma E\theta\right) \left[\Phi(\sigma_b)\right]^{\cdot} = E(\ddot{\varepsilon} + \gamma \dot{\varepsilon}), \qquad (2.3.1)$$

где функция $\Phi(\sigma_b)$ записывается по аналогии с формулой Байкова В. М. (2.1.15):

$$\Phi(\sigma_b) = B_1 \sigma_b + B_2 \sigma_b^2 + B_3 \sigma_b^3 + B_4 \sigma_b^4 + B_5 \sigma_b^5,$$

где коэффициенты

$$B_1 = aE(t), \quad B_2 = bE(t), \quad B_3 = cE(t), \quad B_4 = dE(t), \quad B_5 = eE(t),$$
 (2.3.2)

здесь коэффициенты a, b, c, d и e определяются по формулам (2.1.17) – (2.1.21).

Исключая коэффициент В₁ из последнего уравнения, оно примет вид

$$\Phi(\sigma_b) = \sigma_b + B_2 \sigma_b^2 + B_3 \sigma_b^3 + B_4 \sigma_b^4 + B_5 \sigma_b^5.$$
(2.3.3)

Подставив в уравнение ползучести (2.3.1) функцию (2.3.3), получим

$$\begin{split} \left[\sigma_{b} + B_{2}\sigma_{b}^{2} + B_{3}\sigma_{b}^{3} + B_{4}\sigma_{b}^{4} + B_{5}\sigma_{b}^{5}\right]^{\cdot\cdot} + \left(\gamma - \frac{\dot{E}}{E^{2}} + \gamma E\theta\right) \times \\ \times \left[\sigma_{b} + B_{2}\sigma_{b}^{2} + B_{3}\sigma_{b}^{3} + B_{4}\sigma_{b}^{4} + B_{5}\sigma_{b}^{5}\right]^{\cdot} = E(\ddot{\epsilon} + \gamma\dot{\epsilon}). \end{split}$$

$$(2.3.4)$$

Продифференцируем отдельно выражения, стоящие в квадратных скобках:

$$\begin{split} \left[\sigma_{b} + B_{2}\sigma_{b}^{2} + B_{3}\sigma_{b}^{3} + B_{4}\sigma_{b}^{4} + B_{5}\sigma_{b}^{5}\right]^{\cdot} &= \dot{\sigma}_{b} + \dot{B}_{2}\sigma_{b}^{2} + 2B_{2}\sigma_{b}\dot{\sigma}_{b} + \\ &+ \dot{B}_{3}\sigma_{b}^{3} + 3B_{3}\sigma_{b}^{2}\dot{\sigma}_{b} + \dot{B}_{4}\sigma_{b}^{4} + 4B_{4}\sigma_{b}^{3}\dot{\sigma}_{b} + \dot{B}_{5}\sigma_{b}^{5} + 5B_{5}\sigma_{b}^{4}\dot{\sigma}_{b} = \\ &= \dot{B}_{2}\sigma_{b}^{2} + \dot{B}_{3}\sigma_{b}^{3} + \dot{B}_{4}\sigma_{b}^{4} + \dot{B}_{5}\sigma_{b}^{5} + \left(1 + 2B_{2}\sigma_{b} + 3B_{3}\sigma_{b}^{2} + 4B_{4}\sigma_{b}^{3} + 5B_{5}\sigma_{b}^{4}\right)\dot{\sigma}_{b}. \\ &\left[\sigma_{b} + B_{2}\sigma_{b}^{2} + B_{3}\sigma_{b}^{3} + B_{4}\sigma_{b}^{4} + B_{5}\sigma_{b}^{5}\right]^{\cdot \cdot} = (\dot{\sigma}_{b})^{\cdot} + \left(\dot{B}_{2}\sigma_{b}^{2} + 2B_{2}\sigma_{b}\dot{\sigma}_{b}\right)^{\cdot} + \\ &+ \left(\dot{B}_{3}\sigma_{b}^{3} + 3B_{3}\sigma_{b}^{2}\dot{\sigma}_{b}\right)^{\cdot} + \left(\dot{B}_{4}\sigma_{b}^{4} + 4B_{4}\sigma_{b}^{3}\dot{\sigma}_{b}\right)^{\cdot} + \left(\dot{B}_{5}\sigma_{b}^{5} + 5B_{5}\sigma_{b}^{4}\dot{\sigma}_{b}\right)^{\cdot} = \\ &= \ddot{\sigma}_{b} + \ddot{B}_{2}\sigma_{b}^{2} + 4\dot{B}_{2}\sigma_{b}\dot{\sigma}_{b} + 2B_{2}\dot{\sigma}_{b}^{2} + 2B_{2}\sigma_{b}\ddot{\sigma}_{b} + \ddot{B}_{3}\sigma_{b}^{3} + 6\dot{B}_{3}\sigma_{b}^{2}\dot{\sigma}_{b} + 6B_{3}\sigma_{b}\dot{\sigma}_{b}^{2} + 3B_{3}\sigma_{b}^{2}\ddot{\sigma}_{b} + \\ &+ \ddot{B}_{4}\sigma_{b}^{4} + 8\dot{B}_{4}\sigma_{b}^{3}\dot{\sigma}_{b} + 12B_{4}\sigma_{b}^{2}\dot{\sigma}_{b}^{2} + 4B_{4}\sigma_{b}^{3}\ddot{\sigma}_{b} + \ddot{B}_{5}\sigma_{b}^{5} + 10\dot{B}_{5}\sigma_{b}^{4}\dot{\sigma}_{b} + 20B_{5}\sigma_{b}^{3}\dot{\sigma}_{b}^{2} + 5B_{5}\sigma_{b}^{4}\ddot{\sigma}_{b} = \\ &= \ddot{B}_{2}\sigma_{b}^{2} + \ddot{B}_{3}\sigma_{b}^{3} + \ddot{B}_{4}\sigma_{b}^{4} + \ddot{B}_{5}\sigma_{b}^{5} + \left(1 + 2B_{2}\sigma_{b} + 3B_{3}\sigma_{b}^{2} + 4B_{4}\sigma_{b}^{3} + 5B_{5}\sigma_{b}^{4}\right)\ddot{\sigma}_{b} + \\ &+ \left(2B_{2} + 6B_{3}\sigma_{b} + 12B_{4}\sigma_{b}^{2} + 20B_{5}\sigma_{b}^{3}\right)\dot{\sigma}_{b}^{2} + \left(4\dot{B}_{2}\sigma_{b} + 6\dot{B}_{3}\sigma_{b}^{2} + 8\dot{B}_{4}\sigma_{b}^{3} + 10\dot{B}_{5}\sigma_{b}^{4}\right)\dot{\sigma}_{b}. \end{split}$$

$$\begin{aligned} \ddot{B}_{2}\sigma_{b}^{2} + \ddot{B}_{3}\sigma_{b}^{3} + \ddot{B}_{4}\sigma_{b}^{4} + \ddot{B}_{5}\sigma_{b}^{5} + (1+2B_{2}\sigma_{b}+3B_{3}\sigma_{b}^{2}+4B_{4}\sigma_{b}^{3}+5B_{5}\sigma_{b}^{4})\ddot{\sigma}_{b} + \\ + (2B_{2}+6B_{3}\sigma_{b}+12B_{4}\sigma_{b}^{2}+20B_{5}\sigma_{b}^{3})\dot{\sigma}_{b}^{2} + (4\dot{B}_{2}\sigma_{b}+6\dot{B}_{3}\sigma_{b}^{2}+8\dot{B}_{4}\sigma_{b}^{3}+10\dot{B}_{5}\sigma_{b}^{4})\dot{\sigma}_{b} + \\ + \left(\gamma - \frac{\dot{E}}{E^{2}} + \gamma E\theta\right) \left[\dot{B}_{2}\sigma_{b}^{2} + \dot{B}_{3}\sigma_{b}^{3} + \dot{B}_{4}\sigma_{b}^{4} + \dot{B}_{5}\sigma_{b}^{5} + (1+2B_{2}\sigma_{b}+3B_{3}\sigma_{b}^{2}+4B_{4}\sigma_{b}^{3}+5B_{5}\sigma_{b}^{4})\dot{\sigma}_{b}\right] = E(\ddot{\epsilon}+\gamma\dot{\epsilon}). \end{aligned}$$

$$(2.3.5)$$

Дифференциальное уравнение второго порядка (2.3.5) – это уточненное уравнение ползучести теории упруго-ползучего тела при переменном во времени модуле мгновенных деформаций, учитывающее нелинейную зависимость для мгновенно-нелинейных деформаций в соответствии с требованием *Eurocode* 2.

При
$$E(t) = E_0$$
 уравнение (2.3.5) записывается в виде
 $(1+2B_2\sigma_b+3B_3\sigma_b^2+4B_4\sigma_b^3+5B_5\sigma_b^4)\ddot{\sigma}_b +$
 $+(2B_2+6B_3\sigma_b+12B_4\sigma_b^2+20B_5\sigma_b^3)\dot{\sigma}_b^2 +$ (2.3.6)
 $+\gamma(1+E_0\theta)(1+2B_2\sigma_b+3B_3\sigma_b^2+4B_4\sigma_b^3+5B_5\sigma_b^4)\dot{\sigma}_b = E_0(\ddot{\epsilon}+\gamma\dot{\epsilon}).$

Продолжаем рассматривать задачу о сжатом железобетонном элементе, условие которой приведено стр. 14. Допущение об упругой работе арматуры позволяет записать уравнение

$$N = A_b \cdot \sigma_b + A_s \cdot E_s \cdot \varepsilon. \tag{2.3.7}$$

Зададим начальные условия:

$$\varepsilon(0) = \varepsilon_0; \quad \sigma_b(0) = \sigma_{b0}; \quad \dot{\sigma}_b(0) = \dot{\sigma}_{b0}; \quad \dot{\varepsilon}(0) = \dot{\varepsilon}_0. \tag{2.3.8}$$

Решим задачу для случая постоянного модуля мгновенных деформаций. Численное интегрирование дифференциального уравнения (2.3.6) основано на его сведении к дифференциальному уравнению первого порядка путем введения новых переменных

$$\dot{\sigma}_b = p, \qquad \dot{\varepsilon} = q$$

Для удобства вычислений обозначим

$$\Xi = 1 + 2B_2\sigma_b + 3B_3\sigma_b^2 + 4B_4\sigma_b^3 + 5B_5\sigma_b^4; \qquad \Gamma = \gamma (1 + E_0\theta);$$

$$K = 2B_2 + 6B_3\sigma_b + 12B_4\sigma_b^2 + 20B_5\sigma_b^3;$$
(2.3.9)

тогда уравнение (2.3.6) примет вид

$$\Xi \ddot{\sigma}_b + \mathbf{K} \dot{\sigma}_b^2 + \Gamma \Xi \dot{\sigma}_b = E \ddot{\varepsilon} + \gamma E \dot{\varepsilon}.$$
(2.3.10)

Дифференцируя уравнения (2.2.13) и (2.2.15), получим

$$\ddot{\varepsilon} = -W\ddot{\sigma}_b; \qquad (2.3.11)$$

$$\ddot{\sigma}_b = -Z\ddot{\epsilon}. \tag{2.3.12}$$

Для численного решения уравнения (2.3.10) его достаточно свести к следующий системе дифференциальных уравнений, предварительно подставив в него выражения для $\dot{\varepsilon}$, $\ddot{\varepsilon}$, $\ddot{\sigma}_b$ и $\ddot{\sigma}_b$:

$$\begin{cases} \Xi \ddot{\sigma}_{b} + \mathbf{K} \dot{\sigma}_{b}^{2} + \Gamma \Xi \dot{\sigma}_{b} = E \ddot{\epsilon} + \gamma E \dot{\epsilon} = E(-W) \ddot{\sigma}_{b} + \gamma E(-W) \dot{\sigma}_{b} \\ \Xi (-Z \ddot{\epsilon}) + \mathbf{K} (-Z \dot{\epsilon})^{2} + \Gamma \Xi (-Z \dot{\epsilon}) = E \ddot{\epsilon} + \gamma E \dot{\epsilon} \end{cases},$$

которая в переменных \dot{p} и \dot{q} записывается в виде

$$\begin{cases} (\Xi + EW)\dot{p} = -\gamma EWp - Kp^2 - \Gamma\Xi p \\ -\Xi Z \dot{q} - KZ q^2 - \Gamma\Xi Zq = E \dot{q} + \gamma E q \end{cases}$$

что тождественно

$$\begin{cases} \dot{p} = -\frac{Kp^2 + \gamma EWp + \Gamma \Xi p}{\Xi + EW} \\ \dot{q} = -\frac{KZ q^2 + \Gamma \Xi Zq + \gamma E q}{\Xi Z + E} \end{cases}$$
(2.3.13)

где коэффициенты К, Е и Г определяются по выражениям (2.3.9).

Систему уравнений (2.3.13) необходимо численно интегрировать с помощью специальных пакетов математических программ *Mathematica* 9, *MATLAB* 8.2, *Maple* 17 и др.

2.4. Расчет железобетонных элементов с использованием теории упругой наследственности бетона с учетом мгновенной нелинейности бетона

Учет нелинейной зависимости между мгновенными деформациями и напряжениями в линейной теории упругой наследственности осуществляем по аналогии с теорией упруго-ползучего тела с помощью введения функции $\Phi(\sigma_b)$:

$$\left[\Phi\left(\sigma_{b}\right)\right]^{\cdot} + \gamma\left(1 + \gamma E_{0}C_{0}\right)\Phi\left(\sigma_{b}\right) = E_{0}\left(\dot{\varepsilon} + \gamma\varepsilon\right), \qquad (2.4.1)$$

где γ , C_0 , E_0 – постоянные коэффициенты.

Подставив выражение (2.3.3) в уравнение (2.4.1), получим

$$(1 + 2B_2\sigma_b + 3B_3\sigma_b^2 + 4B_4\sigma_b^3 + 5B_5\sigma_b^4)\dot{\sigma}_b + + \gamma(1 + E_0C_0)(\sigma_b + B_2\sigma_b^2 + B_3\sigma_b^3 + B_4\sigma_b^4 + B_5\sigma_b^5) = E_0(\dot{\varepsilon} + \gamma\varepsilon).$$
(2.4.2)

Дифференциальное уравнение первого порядка (2.4.2) – это уточненное уравнение ползучести теории упругой наследственности, учитывающее нелинейность мгновенных деформаций в соответствии с требованием *Eurocode* 2.

Продолжаем рассматривать задачу о сжатом железобетонном элементе, приведенную на стр. 14. Допущение об упругой работе арматуры позволяет записать уравнение равновесия

$$N = A_b \cdot \sigma_b + A_s \cdot E_s \cdot \varepsilon. \tag{2.4.3}$$

Зададим начальные условия:

$$\varepsilon(0) = \varepsilon_0, \qquad (2.4.4)$$

$$\sigma_b(0) = \sigma_{b0}.\tag{2.4.5}$$

Для численного решения уравнения (2.4.2) его достаточно свести к следующий системе дифференциальных уравнений

$$\begin{cases} \dot{\sigma}_b = F(\sigma_b, \varepsilon) \\ \dot{\varepsilon} = G(\sigma_b, \varepsilon) \end{cases}$$

Подставив в уравнение ползучести (2.4.2) соотношения (2.2.13) и (2.2.15) для $\dot{\varepsilon}$ и $\dot{\sigma}_b$, имеем

$$\begin{cases} \left(1+2B_{2}\sigma_{b}+3B_{3}\sigma_{b}^{2}+4B_{4}\sigma_{b}^{3}+5B_{5}\sigma_{b}^{4}\right)\dot{\sigma}_{b}+E_{0}W\dot{\sigma}_{b}=\\ =\gamma E_{0}\varepsilon-\gamma\left(1+E_{0}C_{0}\right)\left(\sigma_{b}+B_{2}\sigma_{b}^{2}+B_{3}\sigma_{b}^{3}+B_{4}\sigma_{b}^{4}+B_{5}\sigma_{b}^{5}\right)\\ \left(1+2B_{2}\sigma_{b}+3B_{3}\sigma_{b}^{2}+4B_{4}\sigma_{b}^{3}+5B_{5}\sigma_{b}^{4}\right)\left(-Z\dot{\varepsilon}\right)-E_{0}\dot{\varepsilon}=\\ =\gamma E_{0}\varepsilon-\gamma\left(1+E_{0}C_{0}\right)\left(\sigma_{b}+B_{2}\sigma_{b}^{2}+B_{3}\sigma_{b}^{3}+B_{4}\sigma_{b}^{4}+B_{5}\sigma_{b}^{5}\right)\end{cases}$$

что тождественно

$$\begin{cases} \dot{\sigma}_{b} = \frac{\gamma E_{0} \varepsilon - \gamma \left(1 + E_{0} C_{0}\right) \left(\sigma_{b} + B_{2} \sigma_{b}^{2} + B_{3} \sigma_{b}^{3} + B_{4} \sigma_{b}^{4} + B_{5} \sigma_{b}^{5}\right)}{1 + E_{0} W + 2B_{2} \sigma_{b} + 3B_{3} \sigma_{b}^{2} + 4B_{4} \sigma_{b}^{3} + 5B_{5} \sigma_{b}^{4}}, \\ \dot{\varepsilon} = \frac{-Z \left(1 + 2B_{2} \sigma_{b} + 3B_{3} \sigma_{b}^{2} + 4B_{4} \sigma_{b}^{3} + 5B_{5} \sigma_{b}^{4}\right)}{\gamma E_{0} \varepsilon - \gamma \left(1 + E_{0} C_{0}\right) \left(\sigma_{b} + B_{2} \sigma_{b}^{2} + B_{3} \sigma_{b}^{3} + B_{4} \sigma_{b}^{4} + B_{5} \sigma_{b}^{5}\right)}. \end{cases}$$
(2.4.6)

Систему уравнений (2.4.6) необходимо численно интегрировать с помощью специальных пакетов математических программ *Mathematica* 9, *MATLAB* 8.2, *Maple* 17 и др.

В рамках уточненной теории упругой наследственности существует возможность получить аналитическое решение для уравнения (2.4.1) если ограничиться для функции $\Phi(\sigma_b)$ первыми двумя членами ряда (2.3.3). В этом случае уравнение (2.4.1) примет вид

$$(1+2B_2\sigma_b)\dot{\sigma}_b + \gamma(1+E_0C_0)(\sigma_b+B_2\sigma_b^2) = E_0(\dot{\varepsilon}+\gamma\varepsilon).$$
(2.4.7)

Подставим равенства (2.2.12) и (2.2.13) для є и є в уравнение (2.4.7) и выполним преобразования

$$(1+2B_2\sigma_b)\dot{\sigma}_b + \gamma(1+E_0C_0)(\sigma_b + B_2\sigma_b^2) = -E_0W\dot{\sigma}_b + \gamma E_0(X-W\sigma_b),$$

$$(1+E_0W+2B_2\sigma_b)\dot{\sigma}_b = -\gamma(1+E_0C_0)\sigma_b - \gamma B_2(1+E_0C_0)\sigma_b^2 + \gamma E_0X - \gamma E_0W\sigma_b,$$

$$70 (1 + E_0 W + 2B_2 \sigma_b) \dot{\sigma}_b = -\gamma B_2 (1 + E_0 C_0) \sigma_b^2 - \gamma (1 + E_0 C_0 + E_0 W) \sigma_b + \gamma E_0 X.$$

Полученное уравнение представим в виде

$$(K+2B_2\sigma_b)\dot{\sigma}_b = -M\sigma_b^2 - Q\sigma_b + P, \qquad (2.4.8)$$

где коэффициенты *К*, *М*, *Q* и *Р* определяются по формулам

$$K = 1 + E_0 W; \qquad M = \gamma B_2 (1 + E_0 C_0); Q = \gamma (1 + E_0 C_0 + E_0 W); \qquad P = \gamma E_0 X.$$
(2.4.9)

Решим уравнение (2.4.8) относительно напряжений в бетоне σ_b .

Из уравнения (2.4.8) следует

$$-\int \frac{2B_2 \sigma_b + K}{M \sigma_b^2 + Q \sigma_b - P} d\sigma_b = \int dt, \qquad (2.4.10)$$

Рассмотрим отдельно левую часть уравнения (2.4.10). Преобразуем интеграл левой части, обозначив его через *I*₁

$$I_1 = -\int \frac{2B_2\sigma_b + K}{M\sigma_b^2 + Q\sigma_b - P} d\sigma_b = -\frac{B_2}{M} \int \frac{2\sigma_b + \frac{Q}{M} + \left(K - \frac{Q}{M}\right)}{\sigma_b^2 + \frac{Q}{M}\sigma_b - \frac{P}{M}} d\sigma_b.$$

Последний интеграл представим в виде суммы двух интегралов

$$I_1 = -\frac{B_2}{M} \int \frac{2\sigma_b + \frac{Q}{M}}{\sigma_b^2 + \frac{Q}{M}\sigma_b - \frac{P}{M}} d\sigma_b - \frac{B_2}{M} \left(K - \frac{Q}{M}\right) \int \frac{1}{\sigma_b^2 + \frac{Q}{M}\sigma_b - \frac{P}{M}} d\sigma_b.$$

В первом интеграле подведем часть подынтегральной функции под знак дифференциала. Во втором интеграле стоящий в знаменателе трехчлен представим в виде разности квадратов:

$$I_{1} = -\frac{B_{2}}{M} \int \frac{d\left(\sigma_{b}^{2} + \frac{Q}{M}\sigma_{b} - \frac{P}{M}\right)}{\sigma_{b}^{2} + \frac{Q}{M}\sigma_{b} - \frac{P}{M}} - \frac{B_{2}}{M}\left(K - \frac{Q}{M}\right) \int \frac{1}{\left(\sigma_{b} + \frac{Q}{2M}\right)^{2} - \left[\left(\frac{Q}{2M}\right)^{2} + \frac{P}{M}\right]} d\sigma_{b}.$$

$$(2.4.11)$$

Первый интеграл сводится к табличному виду путем замены $z = \sigma_b^2 + \frac{Q}{M} \sigma_b - \frac{P}{M}$, во втором интеграле положим

$$\left(\frac{Q}{2M}\right)^2 + \frac{P}{M} = \pm k^2,$$

где знак плюс или минус берется в зависимости от того, будет ли выражение стоящее слева положительным или отрицательным (случай равенства нулю приведен отдельно).

Рассмотрим все возможные случаи.

1. Пусть
$$\left(\frac{Q}{2M}\right)^2 + \frac{P}{M} < 0$$
, в этом случае имеем $\left(\frac{Q}{2M}\right)^2 + \frac{P}{M} = -k^2.$

Возвращаясь к уравнению (2.4.10) и, учитывая преобразования (2.4.11), получим

$$-\frac{B_2}{M}\ln\left|\sigma_b^2 + \frac{Q}{M}\sigma_b - \frac{P}{M}\right| - \frac{B_2}{M}\left(K - \frac{Q}{M}\right)\frac{1}{k}arctg\left[\frac{1}{k}\left(\sigma_b + \frac{Q}{2M}\right)\right] = t + C_1,$$

где С₁ – постоянная, определяемая из начальных условий.

Подставим начальные условия (2.4.5) и определим значение постоянной С₁:

$$C_1 = -\frac{B_2}{M} \ln \left| \sigma_{b0}^2 + \frac{Q}{M} \sigma_{b0} - \frac{P}{M} \right| - \frac{B_2}{M} \left(K - \frac{Q}{M} \right) \frac{1}{k} \operatorname{arctg} \left[\frac{1}{k} \left(\sigma_{b0} + \frac{Q}{2M} \right) \right].$$

Таким образом, получим

$$-\frac{B_2}{M}\ln\left|\sigma_b^2 + \frac{Q}{M}\sigma_b - \frac{P}{M}\right| - \frac{B_2}{M}\left(K - \frac{Q}{M}\right)\frac{1}{k}arctg\left[\frac{1}{k}\left(\sigma_b + \frac{Q}{2M}\right)\right] =$$

$$=t-\frac{B_2}{M}\ln\left|\sigma_{b0}^2+\frac{Q}{M}\sigma_{b0}-\frac{P}{M}\right|-\frac{B_2}{M}\left(K-\frac{Q}{M}\right)\frac{1}{k}arctg\left[\frac{1}{k}\left(\sigma_{b0}+\frac{Q}{2M}\right)\right],$$

что тождественно

$$-\frac{B_{2}}{M}\ln\left|\frac{\sigma_{b}^{2}+\frac{Q}{M}\sigma_{b}-\frac{P}{M}}{\sigma_{b0}^{2}+\frac{Q}{M}\sigma_{b0}-\frac{P}{M}}\right|-\frac{B_{2}}{M}\left(K-\frac{Q}{M}\right)\frac{1}{k}\times$$

$$\times\left\{arctg\left[\frac{1}{k}\left(\sigma_{b}+\frac{Q}{2M}\right)\right]-arctg\left[\frac{1}{k}\left(\sigma_{b0}+\frac{Q}{2M}\right)\right]\right\}=t.$$
(2.4.12)

2. Пусть $\left(\frac{Q}{2M}\right)^2 + \frac{P}{M} = 0$, тогда при интегрировании уравнения (2.4.10) с

учетом преобразований (2.4.11), имеем

$$-\frac{B_2}{M}\ln\left|\sigma_b^2 + \frac{Q}{M}\sigma_b - \frac{P}{M}\right| + \frac{B_2}{M}\left(K - \frac{Q}{M}\right)\frac{1}{\sigma_b + \frac{Q}{2M}} = t + C_2,$$

где С₂ – постоянная, определяемая из начальных условий.

Подставим начальные условия (2.4.5) и определим значение постоянной С2:

$$C_{2} = -\frac{B_{2}}{M} \ln \left| \sigma_{b0}^{2} + \frac{Q}{M} \sigma_{b0} - \frac{P}{M} \right| + \frac{B_{2}}{M} \left(K - \frac{Q}{M} \right) \frac{1}{\sigma_{b0} + \frac{Q}{2M}}.$$

Таким образом, окончательно получим

$$-\frac{B_2}{M}\ln\left|\sigma_b^2 + \frac{Q}{M}\sigma_b - \frac{P}{M}\right| + \frac{B_2}{M}\left(K - \frac{Q}{M}\right)\frac{1}{\sigma_b + \frac{Q}{2M}} =$$
$$= t - \frac{B_2}{M}\ln\left|\sigma_{b0}^2 + \frac{Q}{M}\sigma_{b0} - \frac{P}{M}\right| + \frac{B_2}{M}\left(K - \frac{Q}{M}\right)\frac{1}{\sigma_{b0} + \frac{Q}{2M}},$$

то есть

$$-\frac{B_{2}}{M}\ln\left|\frac{\sigma_{b}^{2}+\frac{Q}{M}\sigma_{b}-\frac{P}{M}}{\sigma_{b0}^{2}+\frac{Q}{M}\sigma_{b0}-\frac{P}{M}}\right|+\frac{B_{2}}{M}\left(K-\frac{Q}{M}\right)\left(\frac{1}{\sigma_{b}+\frac{Q}{2M}}-\frac{1}{\sigma_{b0}+\frac{Q}{2M}}\right)=t.$$
 (2.4.13)
3. Пусть
$$\left(\frac{Q}{2M}\right)^2 + \frac{P}{M} > 0$$
, в этом случае имеем $\left(\frac{Q}{2M}\right)^2 + \frac{P}{M} = k^2.$

Возвращаясь к уравнению (2.4.10) и учитывая преобразования (2.4.11), получим

$$-\frac{B_2}{M}\ln\left|\sigma_b^2 + \frac{Q}{M}\sigma_b - \frac{P}{M}\right| + \frac{B_2}{M}\left(K - \frac{Q}{M}\right)\frac{1}{2k}\ln\left|\frac{\sigma_b + \frac{Q}{2M} - k}{\sigma_b + \frac{Q}{2M} + k}\right| = t + C_3,$$

где С₃ – постоянная, определяемая из начальных условий.

Подставим начальные условия (2.4.5) и определим значение постоянной С₃:

$$C_{3} = -\frac{B_{2}}{M} \ln \left| \sigma_{b0}^{2} + \frac{Q}{M} \sigma_{b0} - \frac{P}{M} \right| + \frac{B_{2}}{M} \left(K - \frac{Q}{M} \right) \frac{1}{2k} \ln \left| \frac{\sigma_{b0} + \frac{Q}{2M} - k}{\sigma_{b0} + \frac{Q}{2M} + k} \right|.$$

Таким образом, окончательно получим

$$-\frac{B_2}{M}\ln\left|\sigma_b^2 + \frac{Q}{M}\sigma_b - \frac{P}{M}\right| + \frac{B_2}{M}\left(K - \frac{Q}{M}\right)\frac{1}{2k}\ln\left|\frac{\sigma_b + \frac{Q}{2M} - k}{\sigma_b + \frac{Q}{2M} + k}\right| =$$

$$= t - \frac{B_2}{M} \ln \left| \sigma_{b0}^2 + \frac{Q}{M} \sigma_{b0} - \frac{P}{M} \right| + \frac{B_2}{M} \left(K - \frac{Q}{M} \right) \frac{1}{2k} \ln \left| \frac{\sigma_{b0} + \frac{Q}{2M} - k}{\sigma_{b0} + \frac{Q}{2M} + k} \right|$$

что тождественно

$$-\frac{B_{2}}{M}\ln\left|\frac{\sigma_{b}^{2} + \frac{Q}{M}\sigma_{b} - \frac{P}{M}}{\sigma_{b0}^{2} + \frac{Q}{M}\sigma_{b0} - \frac{P}{M}}\right| + \frac{B_{2}}{M}\left(K - \frac{Q}{M}\right)\frac{1}{2k}\ln\left|\frac{\left(\sigma_{b} + \frac{Q}{2M} - k\right)\left(\sigma_{b0} + \frac{Q}{2M} + k\right)}{\left(\sigma_{b} + \frac{Q}{2M} + k\right)\left(\sigma_{b0} + \frac{Q}{2M} - k\right)}\right| = t,$$
(2.4.14)

где коэффициенты М, Р, Q и К определяются по отношениям (2.4.9), а коэффициент B_2 – по (2.3.2).

Решим уравнение (2.4.8) относительно деформаций є.

Подставим в уравнение (2.4.8) равенства (2.2.14) и (2.2.15) для σ_b и $\dot{\sigma}_b$ и выполним ряд последовательных преобразований

$$-[K+2B_{2}(L-Z\varepsilon)]Z\dot{\varepsilon} = -M(L-Z\varepsilon)^{2} - Q(L-Z\varepsilon) + P,$$

$$-(K+2B_{2}L-2B_{2}Z\varepsilon)Z\dot{\varepsilon} = -ML^{2} + 2LZM\varepsilon - MZ^{2}\varepsilon^{2} - QL + QZ\varepsilon + P,$$

$$\dot{\varepsilon} = \frac{-MZ^{2}\varepsilon^{2} + (QZ+2LZM)\varepsilon - (QL+ML^{2}-P)}{2B_{2}Z^{2}\varepsilon - (2ZB_{2}L+ZK)},$$

что тождественно

$$-\int \frac{2B_2 Z^2 \varepsilon - S}{M Z^2 \varepsilon^2 - T \varepsilon + U} d\varepsilon = \int dt, \qquad (2.4.15)$$

`

где обозначены постоянные коэффициенты

$$S = 2ZB_2L + ZK,$$
 $T = QZ + 2LZM,$ $U = QL + ML^2 - P.$ (2.4.16)

Рассмотрим отдельно левую часть уравнения, обозначив ее через I_2

$$I_{2} = -\frac{B_{2}Z^{2}}{MZ^{2}}\int \frac{2\varepsilon - \frac{S}{B_{2}Z^{2}}}{\varepsilon^{2} - \frac{T}{MZ^{2}}\varepsilon + \frac{U}{MZ^{2}}}d\varepsilon = -\frac{B_{2}}{M}\int \frac{2\varepsilon - \frac{T}{MZ^{2}} + \left(\frac{T}{MZ^{2}} - \frac{S}{B_{2}Z^{2}}\right)}{\varepsilon^{2} - \frac{T}{MZ^{2}}\varepsilon + \frac{U}{MZ^{2}}}d\varepsilon.$$

Представим последний интеграл в виде суммы двух интегралов

$$I_{2} = -\frac{B_{2}}{M} \int \frac{2\varepsilon - \frac{T}{MZ^{2}}}{\varepsilon^{2} - \frac{T}{MZ^{2}}\varepsilon + \frac{U}{MZ^{2}}} d\varepsilon - \frac{B_{2}}{M} \left(\frac{T}{MZ^{2}} - \frac{S}{B_{2}Z^{2}}\right) \int \frac{1}{\varepsilon^{2} - \frac{T}{MZ^{2}}\varepsilon + \frac{U}{MZ^{2}}} d\varepsilon.$$

В первом интеграле подведем часть подынтегральной функции под знак дифференциала. Во втором интеграле стоящий в знаменателе трехчлен представим в виде разности квадратов

$$I_{2} = -\frac{B_{2}}{M} \int \frac{d\left(\varepsilon^{2} - \frac{T}{MZ^{2}}\varepsilon + \frac{U}{MZ^{2}}\right)}{\varepsilon^{2} - \frac{T}{MZ^{2}}\varepsilon + \frac{U}{MZ^{2}}} d\varepsilon - \frac{B_{2}}{M} \left(\frac{T}{MZ^{2}} - \frac{S}{B_{2}Z^{2}}\right) \times$$

$$\times \int \frac{1}{\left(\varepsilon - \frac{T}{2MZ^{2}}\right)^{2} - \left[\left(\frac{T}{2MZ^{2}}\right)^{2} - \frac{U}{MZ^{2}}\right]} d\varepsilon.$$

$$(2.4.17)$$

Первый интеграл сводится к табличному виду путем замены $z = \varepsilon^2 - \frac{T}{MZ^2}\varepsilon + \frac{U}{MZ^2}$ во втором интеграле положим

$$\left(\frac{T}{2MZ^2}\right)^2 - \frac{U}{MZ^2} = \pm k^2,$$

где знак плюс или минус берется в зависимости от того, будет ли выражение стоящее слева положительным или отрицательным (случай равенства нулю приведен отдельно).

Рассмотрим все возможные случаи.

1. Пусть
$$\left(\frac{T}{2MZ^2}\right)^2 - \frac{U}{MZ^2} < 0$$
, в этом случае имеем $\left(\frac{T}{2MZ^2}\right)^2 - \frac{U}{MZ^2} = -k^2.$

Возвращаясь к уравнению (2.4.15) и, учитывая преобразования (2.4.17), получим

$$-\frac{B_2}{M}\ln\left|\varepsilon^2 - \frac{T}{MZ^2}\varepsilon + \frac{U}{MZ^2}\right| - \frac{B_2}{M}\left(\frac{T}{MZ^2} - \frac{S}{B_2Z^2}\right)\frac{1}{k}arctg\left[\frac{1}{k}\left(\varepsilon - \frac{T}{2MZ^2}\right)\right] = t + C_4,$$

где С₄ – постоянная, определяемая из начальных условий.

Подставим начальные условия (2.4.4) и определим значение постоянной С₄:

$$C_4 = -\frac{B_2}{M} \ln \left| \varepsilon_0^2 - \frac{T}{MZ^2} \varepsilon_0 + \frac{U}{MZ^2} \right| - \frac{B_2}{M} \left(\frac{T}{MZ^2} - \frac{S}{B_2 Z^2} \right) \frac{1}{k} \operatorname{arctg} \left[\frac{1}{k} \left(\varepsilon_0 - \frac{T}{2MZ^2} \right) \right].$$

Таким образом, получим

$$-\frac{B_2}{M}\ln\left|\varepsilon^2 - \frac{T}{MZ^2}\varepsilon + \frac{U}{MZ^2}\right| - \frac{B_2}{M}\left(\frac{T}{MZ^2} - \frac{S}{B_2Z^2}\right)\frac{1}{k}arctg\left[\frac{1}{k}\left(\varepsilon - \frac{T}{2MZ^2}\right)\right] =$$
$$= t - \frac{B_2}{M}\ln\left|\varepsilon_0^2 - \frac{T}{MZ^2}\varepsilon_0 + \frac{U}{MZ^2}\right| - \frac{B_2}{M}\left(\frac{T}{MZ^2} - \frac{S}{B_2Z^2}\right)\frac{1}{k}arctg\left[\frac{1}{k}\left(\varepsilon_0 - \frac{T}{2MZ^2}\right)\right]$$

то есть

$$-\frac{B_2}{M}\ln\left|\frac{\varepsilon^2 - \frac{T}{MZ^2}\varepsilon + \frac{U}{MZ^2}}{\varepsilon_0^2 - \frac{T}{MZ^2}\varepsilon_0 + \frac{U}{MZ^2}}\right| - \frac{B_2}{M}\left(\frac{T}{MZ^2} - \frac{S}{B_2Z^2}\right)\frac{1}{k}\times$$

$$\times\left\{arctg\left[\frac{1}{k}\left(\varepsilon - \frac{T}{2MZ^2}\right)\right] - arctg\left[\frac{1}{k}\left(\varepsilon_0 - \frac{T}{2MZ^2}\right)\right]\right\} = t$$

$$(...T)^2 = U$$

$$(...T)^2 = U$$

2. Пусть $\left(\frac{T}{2MZ^2}\right)^2 - \frac{U}{MZ^2} = 0$, тогда при интегрировании уравнения (2.4.15)

с учетом преобразований (2.4.17), имеем

$$-\frac{B_2}{M}\ln\left|\epsilon^2 - \frac{T}{MZ^2}\epsilon + \frac{U}{MZ^2}\right| - \frac{B_2}{M}\left(\frac{T}{MZ^2} - \frac{S}{B_2Z^2}\right)\frac{1}{\epsilon - \frac{T}{2MZ^2}} = t + C_5,$$

где С₅ – постоянная, определяемая из начальных условий.

Подставим начальные условия (2.4.4) и определим значение постоянной С₅:

$$C_{5} = -\frac{B_{2}}{M} \ln \left| \varepsilon_{0}^{2} - \frac{T}{MZ^{2}} \varepsilon_{0} + \frac{U}{MZ^{2}} \right| - \frac{B_{2}}{M} \left(\frac{T}{MZ^{2}} - \frac{S}{B_{2}Z^{2}} \right) \frac{1}{\varepsilon_{0} - \frac{T}{2MZ^{2}}}$$

Таким образом, получим

$$-\frac{B_{2}}{M}\ln\left|\varepsilon^{2} - \frac{T}{MZ^{2}}\varepsilon + \frac{U}{MZ^{2}}\right| - \frac{B_{2}}{M}\left(\frac{T}{MZ^{2}} - \frac{S}{B_{2}Z^{2}}\right)\frac{1}{\varepsilon - \frac{T}{2MZ^{2}}} =$$
$$= t - \frac{B_{2}}{M}\ln\left|\varepsilon_{0}^{2} - \frac{T}{MZ^{2}}\varepsilon_{0} + \frac{U}{MZ^{2}}\right| - \frac{B_{2}}{M}\left(\frac{T}{MZ^{2}} - \frac{S}{B_{2}Z^{2}}\right)\frac{1}{\varepsilon_{0} - \frac{T}{2MZ^{2}}}$$

что тождественно

$$-\frac{B_{2}}{M}\ln\left|\frac{\varepsilon^{2}-\frac{T}{MZ^{2}}\varepsilon+\frac{U}{MZ^{2}}}{\varepsilon_{0}^{2}-\frac{T}{MZ^{2}}\varepsilon_{0}+\frac{U}{MZ^{2}}}\right| -\frac{B_{2}}{M}\left(\frac{T}{MZ^{2}}-\frac{S}{B_{2}Z^{2}}\right)\times \left(\frac{1}{\varepsilon-\frac{T}{2MZ^{2}}}-\frac{1}{\varepsilon_{0}}-\frac{1}{2MZ^{2}}\right)=t.$$
(2.4.19)

3. Пусть $\left(\frac{T}{2MZ^{2}}\right)^{2}-\frac{U}{MZ^{2}}>0$, в этом случае будем иметь

$$\left(\frac{T}{2MZ^2}\right)^2 - \frac{U}{MZ^2} = k^2,$$

Возвращаясь к уравнению (2.4.15) и учитывая преобразования (2.4.17), получим

$$-\frac{B_2}{M}\ln\left|\epsilon^2 - \frac{T}{MZ^2}\epsilon + \frac{U}{MZ^2}\right| - \frac{B_2}{M}\left(\frac{T}{MZ^2} - \frac{S}{B_2Z^2}\right)\frac{1}{2k}\ln\left|\frac{\epsilon - \frac{T}{2MZ^2} - k}{\epsilon - \frac{T}{2MZ^2} + k}\right| = t + C_6,$$

где C_6 – постоянная, определяемая из начальных условий.

Подставим начальные условия (2.4.4) и определим значение постоянной С₆:

$$C_{6} = -\frac{B_{2}}{M} \ln \left| \varepsilon_{0}^{2} - \frac{T}{MZ^{2}} \varepsilon_{0} + \frac{U}{MZ^{2}} \right| - \frac{B_{2}}{M} \left(\frac{T}{MZ^{2}} - \frac{S}{B_{2}Z^{2}} \right) \frac{1}{2k} \ln \left| \frac{\varepsilon_{0} - \frac{T}{2MZ^{2}} - k}{\varepsilon_{0} - \frac{T}{2MZ^{2}} + k} \right|.$$

Таким образом, получим

$$-\frac{B_{2}}{M}\ln\left|\varepsilon^{2}-\frac{T}{MZ^{2}}\varepsilon+\frac{U}{MZ^{2}}\right|-\frac{B_{2}}{M}\left(\frac{T}{MZ^{2}}-\frac{S}{B_{2}Z^{2}}\right)\frac{1}{2k}\ln\left|\frac{\varepsilon-\frac{T}{2MZ^{2}}-k}{\varepsilon-\frac{T}{2MZ^{2}}+k}\right| =$$
$$=t-\frac{B_{2}}{M}\ln\left|\varepsilon_{0}^{2}-\frac{T}{MZ^{2}}\varepsilon_{0}+\frac{U}{MZ^{2}}\right|-\frac{B_{2}}{M}\left(\frac{T}{MZ^{2}}-\frac{S}{B_{2}Z^{2}}\right)\frac{1}{2k}\ln\left|\frac{\varepsilon_{0}-\frac{T}{2MZ^{2}}-k}{\varepsilon_{0}-\frac{T}{2MZ^{2}}+k}\right|$$

ИЛИ

$$-\frac{B_{2}}{M}\ln\left|\frac{\varepsilon^{2}-\frac{T}{MZ^{2}}\varepsilon+\frac{U}{MZ^{2}}}{\varepsilon_{0}^{2}-\frac{T}{MZ^{2}}\varepsilon_{0}+\frac{U}{MZ^{2}}}\right| -\frac{B_{2}}{M}\left(\frac{T}{MZ^{2}}-\frac{S}{B_{2}Z^{2}}\right)\times \times \frac{1}{2k}\ln\left|\frac{\left(\varepsilon-\frac{T}{2MZ^{2}}-k\right)\left(\varepsilon_{0}-\frac{T}{2MZ^{2}}+k\right)}{\left(\varepsilon-\frac{T}{2MZ^{2}}+k\right)\left(\varepsilon_{0}-\frac{T}{2MZ^{2}}-k\right)}\right| = t,$$
(2.4.20)

где Z, B_2 , T, U, S и M – коэффициенты, определяемые по соответствующим формулам (2.2.11), (2.3.2), (2.4.9) и (2.4.16).

В рамках уточненной теории упругой наследственности возможность получить решение в замкнутом виде существует лишь при аппроксимации кривой (см. рис. 2.1.1) с помощью двух членов ряда (2.1.15), как это делалось в работах [65, 120 – 123, 137]. При дальнейшем усложнении правой части необходимо прибегать к численному интегрированию системы уравнений (2.4.6).

Несмотря на простоту решения уравнений (2.4.10) и (2.4.15) и возможность получения зависимости напряжений в бетоне σ_b и деформаций ε от времени t в аналитическом виде, полученные уравнения (2.4.12) – (2.4.14) и (2.4.18) – (2.4.20) чрезвычайно сложны при обработке экспериментальных данных.

Выводы

1. Исследование напряженно-деформированного состояния сжатых железобетонных элементов при длительном загружении с учетом мгновенной нелинейности бетона является сложной задачей, не всегда приводящей к решению в замкнутом виде. В частности, в рамках уточенных теорий Маслова-Арутюняна и упругой наследственности получены системы дифференциальных уравнений, интегрирование которых необходимо осуществлять численными методами по специальным программам.

2. Уточненная нелинейная теория старения бетона не только достаточно точно описывает экспериментальные данные испытаний сжатых железобетонных

элементов, загруженных постоянной силой, но позволяет получить аналитические выражения для напряжений и деформаций бетона, а также характеристики ползучести бетона, предельная величина которой применяется в расчетах железобетонных конструкций.

3. С помощью выведенных дифференциальных уравнений можно исследовать нелинейную ползучесть на всем диапазоне нелинейного графика, описывающего связь между мгновенными деформациями и напряжениями, в том числе и на ниспадающем участке.

4. Разрешающие уравнения уточненной теории старения можно применять не только для случая постоянно действующей силы на железобетонный элемент, но и при других схемах загружения, в частности, при циклически приложенной нагрузке, полагая что разгрузка образца проходит по прямой линии.

ГЛАВА 3. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ДЛИТЕЛЬНОГО ЗАГРУЖЕНИЯ СЖАТЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ

С целью проверки полученных теоретических выкладок и выявления нелинейной диаграммы мгновенного деформирования бетона. влияния нормируемой *Eurocode* 2 (см. рис. 2.1.1), на напряжения в бетоне и характеристику ползучести бетона, в лаборатории кафедры железобетонных и каменных конструкций СПбГАСУ проведены экспериментальные исследования загружения продольно армированных ллительного центрально-сжатых железобетонных призм. Испытания проводились при постоянной нагрузке при высоких уровнях загружения, характеризующих область нелинейной ползучести.

При проведении экспериментальных исследований принято допущение о том, что в испытуемых образцах, арматура работает упруго по закону Гука (1.1.1) вплоть до достижения предела текучести. Данное допущение использовалось известными специалистами по железобетону: Талем К. Э., Гвоздевым А. А., Васильевым П. И., Байковым В. М., Бондаренко В. М., Александровским Р. С., Панариным Н. Я. и др., в теоретических исследованиях, при расчете железобетонных элементов и обработке экспериментальных данных.

Экспериментальные исследования включали в себя решение следующих задач:

- подготовка испытательного оборудования;

- подготовка измерительных приборов и их поверка;

- тарирование пружинных устройств (УП);

- изготовление образцов и проведение кратковременных и длительных испытаний;

- обработка результатов, полученных из опыта.

81

В соответствии с видом испытания применялись:

1) для кратковременных испытаний:

- бетонные кубы 100×100×100 мм (20 шт.) и 70×70×70 мм (20 шт.);
- бетонные призмы 100×100×400 мм (15 шт.) и 70×70×280 мм (9 шт.);
- железобетонные призмы 100×100×400 мм (9 шт.) и 70×70×280 мм (9 шт.);

2) для длительных испытаний:

- бетонные призмы 100×100×400 мм (3 шт.) и 70×70×280 мм (3 шт.);
- железобетонные призмы 100×100×400 мм (3 шт.) и 70×70×280 мм (6 шт.).

Общее количество изготовленных образцов – 91 шт.

Кратковременные испытания состояли из определения:

- кубиковой прочности бетона *R*_к;
- призменной прочности бетона *R_b*;
- призменной прочности железобетона *R*_{ж.б.};
- модуля упругости бетона E_b ;

Длительные испытания программы содержат:

- определение продольных деформации є железобетонных образцов.

- определение деформации усадки бетона ε_{ус};

Испытания по определению прочности на осевое растяжение, на растяжение при изгибе, на растяжение при раскалывании, и коэффициента Пуассона не проводились.

Календарь испытаний приведен в табл. 3.1.1.

3.1. Исходные материалы для изготовления образцов

Для изготовления бетонных и железобетонных образцов (призм и кубов) применялись крупный и мелкий заполнитель, вяжущее вещество и арматура, поставляемые на заводы ЗАО «Экспериментальный завод» и ЗАО «Метробетон», которые специализируются на выпуске продукции в виде товарного бетона и сборных бетонных и железобетонных изделий, и прошедшие входной контроль качества.

82

н <i>с</i>	22 2012
Дата изготовления образцов:	22-окт-2012

																					Д	ата 1	1СПЫ	тани	я															
Показатель	Размеры образца, мм	29-окт-2012	5-ноя-2012	6-ноя-2012	7-ноя-2012	8-ноя-2012	12-ноя-2012	19-ноя-2012	26-ноя-2012	3-дек-2012	10-дек-2012	17-дек-2012	24-дек-2012	31-дек-2012	7-янв-2013	14-янв-2013	21-янв-2013	28-янв-2013	4-фев-2013	11-фев-2013	18-фев-2013	25-фев-2013	4-map-2013	11-map-2013	18-map-2013	25-мар-2013	1-апр-2013	8-апр-2013	15-апр-2013	22-апр-2013	29-апр-2013	6-май-2013	13-май-2013	20-май-2013	27-май-2013	3-июн-2013	10-июн-2013	17-июн-2013	24-июн-2013	1-июл-2013
																					Возр	аст	обра	зцов,	, сут															
		7	14	15	16	17	21	28	35	42	49	56	63	70	77	84	91	98	105	112	119	126	133	140	147	154	161	168	175	182	189	196	203	210	217	224	231	238	245	252
D	70×70×70	+	+	-	-	-	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
K _K	100×100×100	+	+	-	-	-	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
D	70×70×280	-	+	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
Λb	100×100×400	-	+	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
P	70×70×280	-	+	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
п ж.б.	100×100×400	-	+	-	-	-	-	+	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
E _b	100×100×400	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
c	70×70×280	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
cyc	100×100×400	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
c	70×70×280	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
c	100×100×400	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Исходные материалы для изготовления образцов:

1. Портландцемент общестроительный с минеральными добавками ЦЕМ II/А-Ш 32,5 Б ОАО Сланцевского цементного завода «ЦЕСЛА» (188560, г. Сланцы, Ленинградская обл.) ГОСТ 31108–2003 [52], ГОСТ 30515–97 [51]. Документ о качестве приведен в прил. В.

2. Песок карьерный намывной для строительных работ с модулем крупности M_к = 2,30 и насыпной плотностью в сухом состоянии ρ_{нп} = 1380 кг/м³ ГОСТ 8736–93 [60], поставляемый компанией ОАО «Рудас» с карьера «Пугарево» (Ленинградской обл., Всеволожский район, пос. Пугарево). Паспорт приведен в прил. Г.

3. Щебень гранитный фракции 5-10 мм, насыпной плотностью $\rho_{\text{нщ}} = 1390 \text{ кг/m}^3$ ГОСТ 8267–93 [58], поставляемый ЗАО «Каменногорское карьероуправление» (Ленинградская обл., г. Каменногорск). Паспорт приведен в прил. Д.

4. Вода затворения бетонной смеси ГОСТ 23732-79 [45, 46].

5. Проволока периодического профиля класса Вр-1 диаметром 5,0 мм и площадью поперечного сечения 19,63 мм² ГОСТ 6727–80 [56]. Документ о качестве и сертификат приведены в прил. Е. Номер партии – 4. Среднее значение разрывного усилия после испытания 5 стержней – 1350 кгс.

6. Прокат листовой горячекатаный толщиной 4 мм ГОСТ 19903–74 [43], применяемый для изготовления торцевых пластинок, размеры которых в плане равны размерам поперечного сечения образцов: 100×100 мм и 70×70 мм.

7. Проволока вязальная термически обработанная диаметром 1,3 мм ГОСТ 3282–74 [53].

8. Формы стальные ГОСТ 22685–89 [44] типа 2ФК-100 и 3ФК-70 для изготовления контрольных образцов в виде кубов и типа ФП-100 (2ФП-100) и ФП-70 для изготовления образцов в виде призм. Формы выбраны с учетом требований [39, 47] в зависимости между размером зерна крупного заполнителя и размером образца.

Контакты предприятий:

ЗАО «Экспериментальный завод» (www.ezavodspb.ru)

195279, Санкт-Петербург, Индустриальный пр., 44, корп. 1.

ЗАО «Метробетон» (*www.metrobeton.ru*)

194214, Санкт-Петербург, ул. Ново-Никитинская, 17.

3.2. Основные измерительные приборы и испытательное оборудование

1. Весы электронные общего назначения модели ТВ-S-32.2-А2 производства ЗАО «Масса-К». Заключение о поверке приведено в прил. Ж.

2. Гигрометры психрометрические ВИТ-1 и ВИТ-2. Паспорта гигрометров ВИТ-1 и ВИТ-2 приведены в прил. И и К.

3. Динамометр переносной эталонный 3-го разряда на сжатие модели ДОС-3-200И производства ООО «ПетВес» (г. Санкт-Петербург). Паспорт динамометра приведен в прил. Л.

4. Тензометры второй модели ТА-2-1 системы Аистова Н. Н. на базе 100 мм с точностью измерения относительных деформаций не ниже 1·10⁻⁵. Выпускной аттестат одного из тензометров приведен в прил. М.

Характеристики тензометров:

- диапазон измерений: от 0,0 до 0,8 мм;

- цена деления основной шкалы: 0,001 мм;

5. Многооборотные измерительные головки (индикаторы) модели 05102 класса точности 1 ТУ 2-034-0221197-013-91 производства ООО «НПФ Завод «Измерон» (г. Санкт-Петербург). Паспорт одного из индикаторов приведен в прил. Н.

Характеристики приборов:

- диапазон измерений: от 0,0 до 2,0 мм;

- цена деления шкалы: 0,002 мм.

6. Штангенциркуль ШЦ-Ш 0-400-0,05 ГОСТ 166-89 [42].

7. Линейка-500д ГОСТ 427-75 [55].

8. Секундомер механический.

9. Машина сжатия МС-1000. Свидетельство о поверке приведено в прил. П.

10. Пресс испытательный ПСУ-250. Свидетельство о поверке приведено в прил. Р.

11. Устройства пружинные (далее – УП).

Для проведения экспериментальных исследований были задействованы тарированные УП двух видов (рис. 3.2.1):

1) три УП мощностью 16000 кгс (УП-1 – УП-3);

2) шесть УП мощностью 8000 кгс (УП-4 – УП-9).

Каждое УП состоит из постамента, вертикальных стоек и верхней траверсы, которые все вместе образуют жесткую замкнутую раму. Внутри этой рамы между подвижным блоком, состоящим из набора спиральных пружин, и столиком постамента размещается испытываемый образец (железобетонная призма).

Все подвижные блоки на устройствах УП оснащены двумя металлическими линейками (ГОСТ 427–75 [55]) с нониусами, по которым контролируется степень сжатия пружины.

Рис. 3.2.1. Общий вид УП-1 – УП-9

Сжимающее усилие на образец передается через горизонтальные металлические прокладки из стали марки У10А толщиной 35 мм и твердостью 58 HRC_Э (протокол испытаний на твердость приведен в прил. С). С внешней стороны металлических прокладок имеется шарообразная лунка глубиной 5 мм, предназначенная для укладки металлического шарика ГОСТ 3722–81 [54] диаметром 20,638 мм для центральной передачи усилия на образец. Чтобы уменьшить трение между поверхностями лунки и облегчить центрирование призмы, радиус лунки выполнен больше радиуса подкладываемого шарика.

3.3. Армирование железобетонных элементов

Армирование железобетонных образцов проводилось едиными пространственными каркасами (рис. 3.3.1). Каркас состоял из 4-х продольных стержней Вр-1 диаметром 5,0 мм каждый, двух стальных пластинок и поперечных хомутов из вязальной проволоки диаметром 1,3 мм, охватывающих стержни между собой, расставленных с шагом 39 ± 1 мм. Расстояние в плане от краев торцевой пластинки до продольной оси арматуры принято 22,5 мм для обеспечения защитного слоя бетона, минимального расстояния между стержнями арматуры, совместной работы арматуры с бетоном и качественной укладки и уплотнения бетонной смеси [118, 119].

Стержни Вр-1, введённые в просверленные отверстия, соединены с металлическими пластинками с внешней стороны электрической дуговой сваркой электродами марки ОЗС-12 (Э46) ГОСТ 9466–75 [61], производства ЗАО «Эсаб-Свэл». После остывания каркаса поверхности пластинок были зачищены от наплывов металла и отполированы с помощью шлифовального круга. Для предотвращения изгиба стержней Вр-1 при обвязке хомутами внутрь каркаса перпендикулярно стрежням временно вкладывались специально изготовленные крестообразные металлические пластинки.

86

Рис. 3.3.1. Пространственный каркас для армирования призм высотой 400 мм

3.4. Проектирование и приготовление бетонной смеси

Состав бетонной смеси запроектирован из следующего задания:

• по виду бетона – тяжелый плотной структуры, на цементном вяжущем;

• по назначению бетона – для монолитного домостроения;

• по классу бетона по прочности при сжатии в проектном возрасте – B15 (средняя прочность бетона не менее 196,5 кгс/см² [49, прил. 1, табл. 6]).

по марке удобоукладываемости бетонной смеси – по осадке конуса (ОК):
 П2 (ОК = 5-9 см [57, табл. 2]).

Состав бетонной смеси из расчета сухих материалов на 1,0 м³ и на требуемый объем в размере 0,175 м³ необходимый для изготовления всех образцов приведен в табл. 3.4.1. Средняя плотность бетонной смеси,

определенная в металлическом цилиндрическом сосуде вместимостью 1000 см³, равна 2390 кг/м³, осадка конуса (ОК) – 7,0 см. Испытания по определению ОК проводились в соответствии с методикой ГОСТ 10181-2000, раздел 4.1 [40] и применением нормального конуса высотой 300 мм. (рис. 3.4.2).

Таблица 3.4.1

Объем	Цемент, кг	Щебень фр. 5-10 мм, кг	Песок, кг	Вода, л	Расчетная плотность бетонной смеси, кг/м ³
1,0 м ³	275	1210	700	220	2405
0,175 м ³	48,125	211,75	122,5	38,5	2403

Состав бетонной смеси

Приготовление бетонной смеси проходило в помещении формовочного цеха № 1 ЗАО «Экспериментальный завод» (рис. 3.4.1). Все образцы изготовлены из одного замеса. Перемешивание компонентов бетонной смеси осуществлено в гравитационном смесителе в течение 75 с ([57, прил. А, табл. А.1]).

Рис. 3.4.1. Общий вид рабочего места по приготовлению бетонной смеси для изготовления образцов: *1* – гравитационный смеситель; *2* – формы; *3* – поддон; *4* – исходные материалы; *5* – производственный вибростол

Рис. 3.4.2. Определения осадки конуса бетонной смеси

3.5. Изготовление образцов и их хранение до испытаний

Перед изготовлением образцов внутренние поверхности собранных металлических форм были обработаны тонким слоем специальной смазки Эмульсол МИАРОЛ ТУ 0258-001-79301130–2008, выпускаемой ЗАО «Рязанский опытный завод нефтехимпродуктов» и предназначенной для смазывания металлических форм при производстве железобетонных изделий. Все образцы (кубы и призмы) формовались в горизонтальном положении на производственном вибростоле, уплотнение бетонной смеси проходило одновременно во всех формах. Открытые поверхности образцов после уплотнения заглаживались кельмой отделочника.

Образцы до момента распалубливания хранились в формах в помещении цеха в течение 1 сут., покрытые полиэтиленовой пленкой ГОСТ 10354–82 [41]

при средней температуре воздуха +19 °С (рис. 3.5.1), что соответствует требованию п. 2.3.2 ГОСТ 10180–90 [39].

Рис. 3.5.1. Хранение образцов в формах, покрытых полиэтиленовой пленкой, в помещении цеха первые сутки до распалубки

На вторые сутки образцы были распалублены и перенесены в камеру с нормальными условиями твердения с температурой воздуха +20 °C и относительной влажностью воздуха 95 %. В камере твердения кубы и призмы укладывались на подкладки таким образом, чтобы расстояние между смежными образцами и между образцами и стенами камеры было не менее 5,0 мм (рис. 3.5.2). Непосредственное орошение водой образцов в камере не допускалось. В камере образцы хранились до момента испытания.

Рис. 3.5.2. Твердение кубов и призм в камере с нормальными условиями

3.6. Методика экспериментальных исследований

Кратковременные испытания на сжатие проводились на поверенном оборудовании в аккредитованной испытательной лаборатории ЗАО «Экспериментальный завод».

Длительные испытания проходили в учебной лаборатории кафедры железобетонных И каменных конструкций СПбГАСУ. Для поддержания постоянных температурно-влажностных условий течение длительных В испытаний, внутри лаборатории было выгорожено отдельное помещение. Ограждающая конструкция выполнена из деревянного бруса сечением 50×50 мм и с наружной стороны обшита листами сотового поликарбоната Berolux толщиной 5 мм ТУ 2291-001-73658121-09. Внутри этого же помещения хранились контрольные незагруженные образцы-близнецы. Общий вид помещения представлен на рис. 3.6.1.

Рис. 3.6.1. Общий вид помещения (внешняя обшивка снята на время фотографирования)

Перед началом проведения испытаний образцы осматривались на наличие дефектов в виде околов ребер, раковин и инородных включений. Трещин, околов ребер глубиной более 10 мм, раковин диаметром более 10 мм и глубиной более 5 мм, следов инородных включений, расслоения и недоуплотнения бетонной смеси на образцах обнаружено не было. Наплывы бетона на ребрах опорных граней образцов устранялись абразивным камнем и одновременно проверялись отклонения их размеров от номинальных.

В процессе экспериментальных исследований падание прямых солнечных лучей на образцы не допускалось.

3.6.1. Определение показателей R_к, R_b, R_{ж.б.} и E_b

Определения показателей кубиковой прочности бетона R_{κ} проводились в возрасте бетона 7, 14, 21, 28 и 252 сут.; призменной прочности бетона R_b и прочности для железобетона $R_{\text{ж.б.}}$ – в возрасте 14, 28 и 252 сут.; модуля упругости E_b – в возрасте 14 и 252 сут. (см. табл. 3.1.1).

Показатель R_{κ} определялся при испытании бетонных кубов при сжатии с длиной ребра 70 и 100 мм. При среднем внутрисерийном коэффициенте вариации прочности бетона на заводе $\overline{V}_s = 8\%$, и использовании форм 2ФК и 3ФК число образцов бетона в каждой серии составляло 4 шт. ([39, п. 2.1.3]). Характер разрушения образца-куба приведен на рис. 3.6.2. Отчетливо видно, как во время разрушения бетонный куб приобрел форму двух усеченных пирамид, соприкасающихся друг с другом своими малыми основаниями.

Определение прочности R_b проходило на бетонных призмах размерами 70×70×280 мм и 100×100×400 мм. Каждая серия состояла из трех образцов.

Значение $R_{\text{ж.б.}}$ устанавливалось при испытании железобетонных призм размерами 70×70×280 мм и 100×100×400 мм. Каждая серия состояла из трех образцов. Перед началом испытания металлические торцы призм очищались сухой тканью, а между образцом и плитами пресса подкладывался асбестокартонный лист толщиной 3 мм ГОСТ 2850–95 [50] для равномерной

передачи нагрузки на образец. Характер разрушения железобетонных призм показан на рис. 3.6.3.

Рис. 3.6.2. Характер разрушения образца-куба длиной ребра 100 мм

Рис. 3.6.3. Характер разрушения железобетонных призм высотой 280 мм

Для определения показателя E_b применялись бетонные призмы размерами 100×100×400 мм. Каждая серия состояла из трех призм (ГОСТ 24452-80 [47]).

Продольные деформации измерялись тензометрами второй модели TA-2-1 системы Аистова H. H., обеспечивающие измерение относительных деформаций с точностью не ниже $1 \cdot 10^{-5}$. Вначале на боковых поверхностях образцов были размечены центральные линии, на которые была нанесена база для установки тензометров. База составляла 100 мм и располагалась на одинаковом расстоянии от торцов призмы. Тензометры закреплялись на четырех сторонах призмы с помощью струбцин. В места соприкосновения опорного ножа и пера тензометра с бетоном на поверхность бетона заранее были приклеены пластинки из кровельной стали размером 15×5 мм толщиной 0,5 мм с помощью эпоксидного клея «Момент Эпоксилин *DUO*».

При проведении испытания обязательно контролировалось условие о центрировании образца в прессе. Для этого в начале испытания проверялись отклонения деформаций по каждой грани призмы при нагружении от условного нуля до $0,4R_b$. Величина отклонений составляла 11 % от их среднего арифметического значения, что меньше допустимых 15 % [47, п. 4.4].

Нагружение образца производилось ступенями по 10 % от прогнозируемой разрушающей нагрузки с 5-минутной выдержкой на каждой ступени и замером деформаций по приборам в начале и в конце каждой выдержки ступени нагрузки. Замер деформаций проходил до ступени 0,4*R*_b, после чего приборы были сняты, а дальнейшее загружение призм проходило с постоянной скоростью до разрушения образца.

3.6.2. Определение деформации усадки бетона

Деформация усадки бетона ε_{yc} определялась на серии контрольных бетонных призмах размерами 70×70×280 мм и 100×100×400 мм негидроизолированных от влагообмена с окружающей средой в соответствии с требованиями [48]. Каждая серия образцов состояла из трех призм (рис. 3.6.4, *a*, *б*).

Рис. 3.6.4. Определение деформаций усадки на призмах 100×100×400 мм (*a*) и 70×70×280мм (*б*)

Начало испытаний – 5 ноября 2012 г. (возраст бетона – 14 сут.).

Окончания испытаний – 1 июля 2013 г. (возраст бетона – 252 сут.).

Продолжительность проведения испытания – 238 сут.

Для определения величины усадки использовались индикаторы, по которым измерялись продольные деформации призм. До начала испытания на боковых поверхностях бетонных образцов были размечены линии, на которые была нанесена база для их установки. Для призм высотой 400 мм база составляла 267 мм, для призм высотой 280 мм – 187 мм. В соответствии с п. 3.5 ГОСТ 24452-80 [47] установка индикаторов на такую базу обеспечивает измерение относительных деформаций с точностью не ниже 1.10⁻⁵. Индикаторы по четырем сторонам призмы закреплялись с помощью стальных рамок, выполненных из равнополочных уголков 25×25×4 мм ГОСТ 8509-93 [59] и зажимались в верхних рамках с помощью винтов. Под каждую ножку индикатора в нижние рамки жестко вкручивались металлические штанги диаметром 8 мм, благодаря чему подвижной оставалась лишь ножка индикатора. Рамка закреплялась на бетонном образце с помощью четырех упорных винтов – по два с противоположных сторон образца. Под упорные винты на поверхность бетона были заранее приклеены пластинки из кровельной стали размером 12×5 мм толщиной 0,5 мм с помощью эпоксидного клея «Момент Эпоксилин DUO». Каждый образец с закрепленными на его гранях индикаторами установлен на отдельный горизонтальный вращающийся столик. Благодаря такому решению при снятии показаний с индикаторов исключались случайные толчки, удары, перемещения образца и др.

Торцевые поверхности образцов были закрыты металлическими пластинами толщиной 4 мм [48, п. 3.2].

Начальный отсчет показаний индикаторов снимался непосредственно после закрепления приборов на призмах, второй отсчет – через 4 ч. Последующее снятие отсчетов производилось через одни сутки, затем на 2, 3, 7 сут. и далее через каждые 7 сут. до конца испытаний. Одновременно измерялась температура и влажность воздуха в помещении.

3.6.3. Определение продольных деформаций железобетонных элементов

Испытания по определению продольных деформаций є железобетонных призм, находящихся под постоянной нагрузкой, проводились на образцах негидроизолированных от влагообмена с окружающей средой в соответствии с требованиями [48]. Общее количество испытанных призм – 9 шт. Образцы были разбиты на 3 серии, в каждой из которой было по 3 призмы (табл. 3.6.1).

Таблица 3.6.1

Серия образцов	Номер пружин- ной установки	Номера образцов	Размеры, мм	Сила, кгс	Начальный уро- вень загружения
№ 1	УП-1, УП-2, УП-3	68, 69, 70	100×100×400	12000	0,78
Nº 2	УП-5, УП-6, УП-7	80, 81, 82	70×70×280	5400	0,66
Nº 3	УП-4, УП-8, УП-9	83, 84, 85	70×70×280	7200	0,87

Исходные данные длительных экспериментальных исследований

Начало испытаний – 5 ноября 2012 г. (возраст бетона – 14 сут.).

Окончания испытаний – 1 июля 2013 г. (возраст бетона – 252 сут.).

Продолжительность проведения испытания – 238 сут.

Для измерения деформаций применялись тензометры второй модели TA-2-1 системы Аистова Н. Н. на базе 100 мм, обеспечивающие измерение относительных деформаций с точностью не ниже $1 \cdot 10^{-5}$. Процессы закрепления тензометров на гранях призмы и центрирования призм в прессе аналогичны процессам, описанным в разделе 3.6.2. Перед началом испытания металлические торцы призм очищались сухой тканью, и между образцом и плитами пресса для равномерной передачи нагрузки на образец подкладывался асбестокартонный лист толщиной 3 мм ГОСТ 2850–95 [50]. Величина действующей нагрузки на образцы в течение длительных испытаний контролировалась динамометром ДОС-3-200И (рис. 3.6.5).

Начальный отсчет показаний тензометров снимался на незагруженных образцах, затем непосредственно после загружения и далее через 1 ч.

Последующее снятие отсчетов производилось через одни сутки, затем на 2, 3, 7 сут. и далее через каждые 7 сут. до конца испытаний. Одновременно со снятием показаний тензометров измерялась температура воздуха в помещении.

Рис. 3.6.5. Контроль нагрузки на образцы с помощью динамометра ДОС-3-200И

3.7. Результаты экспериментальных исследований

3.7.1. Результаты кратковременных испытаний

Результаты кратковременных испытаний по определению кубиковой прочности бетона R_{κ} , призменной прочности бетона R_b , призменной прочности железобетона $R_{\kappa,\delta}$ и модуля упругости бетона E_b в зависимости от размеров образца и возраста бетона в момент испытания представлены в табл. 3.7.1.

Коэффициенты призменной прочности $K_{\pi.\pi.}(t)$, показывающие отношение призменной прочности $R_b(t)$ к кубиковой $R_{\kappa}(t)$, в возрасте 14, 28 и 252 сут. составляют:

$$K_{\text{п.п.}}(14) = \frac{131,4}{161,7} = 0,81;$$
 $K_{\text{п.п.}}(28) = \frac{170,2}{231,1} = 0,74;$ $K_{\text{п.п.}}(252) = \frac{189,1}{251,4} = 0,75.$

Проанализируем отклонения экспериментальных значений прочности *R*(*t*) от значений, вычисленных по формуле Скрамтаева [117]

$$R_{\rm C}(t) = R_{28} \frac{\lg t}{\lg 28} \tag{3.7.1}$$

и по формуле Щербакова [94]

$$R_{III}(t) = R_{28} \left[1 + \frac{a}{c+B} \left(\frac{t-28}{t+d} \right) \right], \qquad (3.7.2)$$

где R_{28} – кубиковая прочность бетона в возрасте 28 сут.; В – класс бетона для возраста 28 сут., здесь В = 15; t – возраст бетона; a, c, d – коэффициенты, зависящие от вида цемента и равные a = 23, c = 55, d = 11.

Подставим в формулу (3.7.2) коэффициенты *a*, *c*, *d* и В:

$$R_{III}(t) = R_{28} \cdot \left[1 + 0.33 \cdot \left(\frac{t - 28}{t + 11} \right) \right]$$
(3.7.3)

Результаты расчетов по формулам (3.7.1) и (3.7.3) сведены в табл. 3.7.2 и проиллюстрированы в виде графиков на рис. 3.7.1.

					Возраст (бетона в мон	мент испыта	ания, сут.			
Обозна- чение	Размеры образца, мм	,	7	1	4	2	1	2	8	25	52
	1,7				Пон	казания про	чности, кгс/	/cm ²			
D	100×100×100	142,8	145.6	160,9	161 7	198,2	214.2	227,4	221.1	232,8	251.4
Λ _κ	70×70×70	148,4	143,0	162,4	101,7	230,1	214,2	234,8	231,1	270,0	231,4
D	100×100×400			143,0	121 4			172,0	170.2	199,5	190 1
\mathbf{h}_b	70×70×280			119,7	151,4			168,3	170,2	178,7	169,1
D	100×100×400			160,2	174.0			211,0	225 4	223,0	250.2
л _{ж.б.}	70×70×280			187,7	174,0			239,8	223,4	277,6	230,3
E_b :	100×100×400	-	-	250	0000	-	-	-	-	310	000

Результаты кратковременных испытаний

Примечание.

1. Показание прочности образцов приведено прочности базового образца размером рабочего сечения 150×150 мм ([39, п. 2.1.1; 47, п. 1.1]).

2. *R*_{к28} = 231,1 > 196,5, где 196,5 - значение прочности бетона на сжатие в проектном возрасте для класса В15 ([49, прил. 1, табл. 6]).

3. Символ «--» в некоторых ячейках означает, что при таком возрасте бетона испытания не проводились.

4. Подробный журнал определения прочности по контрольным образцам приведен в приложении 1.

Результаты показателей $R_{\rm C}(t)$ и $R_{\rm III}(t)$ и

процентное отклонение расчетных значений от фактических

Возраст бетона,		Кубик	овая проч кгс/см ²	ность,			Призме	енная про кгс/см ²	чность,	
сут.	$R_{ m _{3KC.}}$	R_{κ}	C(t)	$R_{\kappa I}$	ц(<i>t</i>)	<i>R</i> экс.	R_{b0}	C(t)	R_{bI}	ц(<i>t</i>)
7	145,6	135,0	7,3 %	142,1	2,4 %		99,4		104,7	
14	161,7	183,0	13,2 %	188,4	16,5 %	131,4	134,8	2,6 %	138,7	5,6 %
21	214,2	211,1	1,4 %	214,4	0,1 %		155,5		157,9	
28			231,1					170,2		
252	251,4	375,3	49,2 %	296,1	22,0 %	189,1	282,4	49,3 %	218,0	15,3 %

Из расчетов видно, что формула Щербакова наиболее точно описывает экспериментальные значения прочности бетона с погрешностью не более 22,0 % и 15,3 % для $R_{\rm k}$ и R_b соответственно.

Теоретическую зависимость между модулем упругости бетона *E_b* и прочностью бетона устанавливаем с помощью формулы Графа [85]:

$$E_b(t) = \frac{1000000}{1,7 + \frac{360}{R_{\kappa}(t)}}.$$
(3.7.4)

В частности, для возрастов бетона 14 сут. и 252 сут. расчётный модуль упругости *E_b* составляет

$$E_b(14) = \frac{1000000}{1,7 + \frac{360}{161,7}} = \frac{1000000}{3,93} = 254452 \text{ krc/cm}^2 \approx 250000 \text{ krc/cm}^2$$

с погрешностью 1,8 % и

$$E_b(252) = \frac{1000000}{1,7 + \frac{360}{251,4}} = \frac{1000000}{3,93} = 319286 \text{ krc/cm}^2 \approx 310000 \text{ krc/cm}^2$$

с погрешностью 2,9 %.

После завершения длительных экспериментальных исследований железобетонные образцы, находившиеся под постоянной силой, были испытаны на разрушающую нагрузку. Результаты кратковременных испытаний железобетонных призм приведены в табл. 3.7.3.

Таблица 3.7.3

Серия, №	Размеры образца, мм	Средняя величина $R_{x.6.}$, кгс/см ²
1	100×100×400	301,0
2	70×70×280	351,0
3	70×70×280	357,0

Результаты кратковременных испытаний железобетонных призм

3.7.2. Результаты длительных испытаний

Результаты испытаний железобетонных призм (серии № 1, 2, 3) по определению продольных деформаций є приведены в табл. 3.7.5 - 3.7.7 и на рис. 3.7.4, бетонных призм по определению деформаций усадки ε_{yc} – в прил. № 2. Изменение температуры воздуха внутри помещения в течение экспериментальных исследований и вычисленные влажности наружного воздуха приведены в табл. 3.7.4 и на рис. 3.7.2 и рис 3.7.3.

Таблица 3.7.4

104

Изменение температуры и относительной влажности

воздуха в помещении за период длительных испытаний

			•		Те	иперату	ра возл	vxa			
		8	CTH T	ВИ	T-1	ВИ	T-2	Cpe	дняя	C Tb	таж ^{в,} %
№ п/п	Дата испытания	Время снятия отсчета	Продолжительно испытания, су	сухой термо- метр $T_{\rm сух., }$ $^{\circ}C$	влажный тер- мометр T _{вл} , °C	сухой термо- метр T _{сух} , °C	влажный тер- мометр T _{вл} , °C	сухой термо- метр Т _{сух} , °С	влажный тер- мометр T _{вл} , °C	Средняя разнос [.] <i>T</i> сух. – <i>Т</i> вл., ^о	Относительная вл ность воздуха W _в
1	5-ноя-2012	20.00	0	20,7	16,9	20,6	16,6	20,7	16,8	3,9	64,5
2	6-ноя-2012	20.00	1	20,7	16,5	20,5	16,9	20,6	16,7	3,9	64,4
3	7-ноя-2012	20.00	2	20,6	16,4	20,4	16,9	20,5	16,7	3,9	64,1
4	8-ноя-2012	20.00	3	20,5	16,0	20,4	17,0	20,5	16,5	4,0	63,5
5	12-ноя-2012	20.00	7	20,0	15,7	20,0	16,3	20,0	16,0	4,0	63,0
6	19-ноя-2012	20.00	14	19,2	15,0	19,2	16,0	19,2	15,5	3,7	62,8
7	26-ноя-2012	20.00	21	19,2	14,6	19,1	15,6	19,2	15,1	4,1	60,6
8	3-дек-2012	20.00	28	18,0	13,0	18,0	13,0	18,0	13,0	5,0	51,0
9	10-дек-2012	20.00	35	17,0	12,0	17,1	12,0	17,1	12,0	5,1	48,4
10	17-дек-2012	20.00	42	15,8	10,8	15,7	10,9	15,8	10,9	4,9	48,4
11	24-дек-2012	20.00	49	16,0	11,0	15,7	11,0	15,9	11,0	4,9	48,6
12	31-дек-2012	20.00	56	16,0	11,3	15,8	11,1	15,9	11,2	4,7	50,3
13	7-янв-2013	20.00	63	16,4	11,6	16,8	12,0	16,6	11,8	4,8	50,4
14	14-янв-2013	20.00	70	16,6	11,7	16,6	11,7	16,6	11,7	4,9	49,5
15	21-янв-2013	20.00	77	17,2	11,8	17,2	11,8	17,2	11,8	5,4	46,2
16	28-янв-2013	20.00	84	17,2	12,2	18,0	12,2	17,6	12,2	5,4	47,0
17	4-фев-2013	20.00	91	17,6	12,0	17,3	12,0	17,5	12,0	5,5	46,0
18	11-фев-2013	20.00	98	17,7	12,1	17,6	12,1	17,7	12,1	5,6	45,4
19	18-фев-2013	20.00	105	17,5	12,2	17,5	12,2	17,5	12,2	5,3	47,6
20	25-фев-2013	20.00	112	17,4	12,0	17,4	12,0	17,4	12,0	5,4	46,6
21	4-мар-2013	20.00	119	17,5	12,0	17,5	12,0	17,5	12,0	5,5	46,0
22	11-мар-2013	20.00	126	17,3	11,9	17,4	11,9	17,4	11,9	5,5	45,8
23	18-мар-2013	20.00	133	17,5	12,0	17,7	12,0	17,6	12,0	5,6	45,2
24	25-мар-2013	20.00	140	17,5	12,4	17,6	12,4	17,6	12,4	5,2	48,6
25	1-апр-2013	20.00	147	17,5	12,5	17,6	12,5	17,6	12,5	5,1	49,4
26	8-апр-2013	20.00	154	17,5	12,9	17,6	13,0	17,6	13,0	4,6	53,7
27	15-апр-2013	20.00	161	18,5	13,8	18,5	14,8	18,5	14,3	4,2	58,7
28	22-апр-2013	20.00	168	18,6	14,6	18,4	14,6	18,5	14,6	3,9	61,5
29	29-апр-2013	20.00	175	18,7	15,3	18,6	14,5	18,7	14,9	3,8	63,0
30	6-май-2013	20.00	182	18,8	16,0	19,0	14,6	18,9	15,3	3,6	64,9
31	13-май-2013	20.00	189	18,8	16,2	19,1	15,4	19,0	15,8	3,2	68,4
32	20-май-2013	20.00	196	18,9	16,3	19,0	16,1	19,0	16,2	2,8	72,0
33	27-май-2013	20.00	203	19,3	17,0	19,9	16,5	19,6	16,8	2,9	71,6
34	3-июн-2013	20.00	210	19,9	17,5	20,2	17,0	20,1	17,3	2,8	73,1
35	10-июн-2013	20.00	217	20,9	18,2	21,0	17,9	21,0	18,1	2,9	73,0
36	17-июн-2013	20.00	224	21,0	18,3	21,0	18,0	21,0	18,2	2,9	73,0
37	24-июн-2013	20.00	231	21,4	18,6	21,4	18,2	21,4	18,4	3,0	72,3
38	1-июл-2013	20.00	238	21,6	19,0	21,6	18,4	21,6	18,7	2,9	73,5

Рис. 3.7.2. Изменение температуры воздуха в помещении

Рис. 3.7.3. Изменение влажности воздуха в помещении

105

Дa	га изготовлени	я образі	цов:	22-ок	т-2012																																									
Ha	чало испытани	й:		5-ноя	-2012																																									
Ок	ончание испыт	аний:		1-ию.	п-2013																																									
		К	VT							УП	I-1 (O6	бразец	ι № 68))										УΠ-	2 (Обр	азец №	2 69)										УІ	I-3 (O6	бразец і	<u>№</u> 70)						p.) ⁻³
_		яти а	кит. й, с			3	аводси	кой но	мер т	ензом	етра, н	номер	грани	призм	ы			þ.,) ^{_3}		1	Заводс	кой но	мер те	ензоме	гра, но	мер гра	ани п	ризмы				þ.,) ^{_3}		3ai	одской	номер	тензом	етра, н	юмер г	рани г	призмь	Ы		,	þ.,) ^{_3}	деф ×1(
1/П	Дата	I СН	КІГО	зрас 1а,		<u>№</u> 104		J	<u>№</u> 103	3		<u>№</u> 10)2		<u>№</u> 101	1	cb	д е ф ×1(<u>№</u> 2			<u>№</u> 3		_	<u>№</u> 4		_	№ 1		cb	д е ф ×1(<u>№</u> 65		<u>№</u> 6	8		<u>№</u> 67	<u> </u>	Ē	<u>№</u> 66	ć	cb	д е ф ×1(нТ. С,
Ň	испытания	ems otc	род ыта	Bog		1			2			3			4		ΔC	00 C		1			2			3			4		ΔC	ос. Сер		1		2			3		 	4		ΔC	0 C 8	нос
		Bp		õ	C	ΛC	$\Sigma \Lambda C$	C	$\frac{1}{\Lambda C}$	$\Sigma \Lambda C$	C	ΔC	$\Sigma \Lambda C$	C	ΛC	$\Sigma \Lambda C$		DtH ΣΔ(C	ΛC	$\Sigma \Lambda C$	C	$\frac{-}{\Lambda C}$	$\Sigma \Lambda C$	C	$\frac{S}{\Lambda C \mid \Sigma}$	ΔC	C	ΛC	$\Sigma \Lambda C$		Отн ∑∆(C	$\frac{1}{\Lambda C \mid \Sigma}$	\mathcal{C}	$\frac{1}{\Lambda C}$	$\Sigma \Lambda C$	C		$\Sigma \Lambda C$	C	ΛC	$\Sigma \Lambda C$	1 '	Σ Σ Δ	O _{TI}
1					60	<u> </u>		00			24			21			0.0		51			11	ΔC		6		<u>де</u>	14	<u> </u>		0.0		109					71			42					0.000
$\frac{1}{2}$	5-HOR-2012	19.00	0	14	1/7	79	79	90 204	114	114	111	77	77	71	50	50	80.0	0,000	1/13	92	<u>0</u>	78	67	67	18	<u> </u>	0 42	05	81	0 81	70.5	0,000	108	82	$\frac{1}{2}$ $\frac{9}{16}$	3 73	73	132	61	61	43	69	69	71.3	0,000	0,000
3	5-407-2012	20.00		14	147	12	91	204	21	135	111	7	84	75	4	54	11.0	0,800	143	14	106	86	8	75	40 54	6	42 48	101	6	87	85	0,703	208	18 1	$\frac{10}{10}$	6 13	86	132	10	71	12	10	79	12.8	0,713	0,739
4	6-ноя-2012	20.00	1	15	168	9	100	235	10	145	125	7	91	80	5	59	7.8	0,910	162	5	111	92	6	81	59	5	5 3	107	6	93	55	0,790	218	10 1	10 18	7 11	97	145	3	74	130	8	87	8.0	0,0+0 0.920	0.918
5	7-ноя-2012	20.00	2	16	180	12	112	250	15	160	130	5	96	84	4	63	9.0	1.078	174	12	123	97	5	86	61	2	55	118	11	104	7.5	0.920	225	7 1	17 19	$\frac{7}{0}$ 3	100	149	4	78	137	7	94	5.3	0.973	0.990
6	8-ноя-2012	20.00	3	17	190	10	122	263	13	173	144	14	110	90	6	69	10.8	1,185	185	11	134	104	7	93	65	4	59	130	12	116	8.5	1.005	233	8 1	25 19	8 8	108	152	3	81	145	8	102	6.8	1.040	1.077
7	12-ноя-2012	20.00	7	21	208	18	140	286	23	196	158	14	124	99	9	78	16,0	1,345	203	18	152	116	12	105	70	5	64	143	13	129	12,0	1,125	246	13 1	38 21	2 14	122	158	6	87	157	12	114	11.3	1,153	1,208
8	19-ноя-2012	20.00	14	28	227	19	159	311	25	221	175	17	141	110	11	89	18,0	1,525	224	21	173	130	14	119	78	8	72	160	17	146	15,0	1,275	265	19 1	57 22	9 17	139	168	10	97	172	15	129	15,3	1,305	1,368
9	26-ноя-2012	20.00	21	35	240	13	172	328	17	238	187	12	153	118	8	97	12,5	1,650	241	17	190	140	10	129	87	9	81	170	10	156	11,5	1,390	279	14 1	71 24	2 13	152	177	9	106	186	14	143	12,5	1,430	1,490
10	3-дек-2012	20.00	28	42	255	15	187	352	24	262	204	17	170	127	9	106	16,3	1,813	271	30	220	164	24	153	103	16	97	197	27	183	24,3	1,633	301	22 1	93 25	9 17	169	190	13	119	203	17	160	17,3	1,603	1,683
11	10-дек-2012	20.00	35	49	267	12	199	360	8	270	214	10	180	133	6	112	9,0	1,903	285	14	234	173	9	162	109	6	103	204	7	190	9,0	1,723	319	18 2	11 27	2 13	182	200	10	129	216	13	173	13,5	1,738	1,788
12	17-дек-2012	20.00	42	56	275	8	207	383	23	293	225	11	191	140	7	119	12,3	2,025	296	11	245	180	7	169	116	7	110	216	12	202	9,3	1,815	326	7 2	18 28	1 9	191	206	6	135	223	7	180	7,3	1,810	1,883
13	24-дек-2012	20.00	49	63	282	7	214	392	9	302	231	6	197	144	4	123	6,5	2,090	303	7	252	183	3	172	119	3	113	222	6	208	4,8	1,863	333	7 2	25 28	6	197	211	5	140	230	7	187	6,3	1,873	1,942
14	31-дек-2012	20.00	56	70	285	3	217	397	5	307	233	2	199	146	2	125	3,0	2,120	306	3	255	188	5	177	121	2	115	225	3	211	3,3	1,895	337	4 2	29 28	9 2	199	213	2	142	232	2	189	2,5	1,898	1,971
15	7-янв-2013	20.00	63	77	294	9	226	408	11	318	241	8	207	151	5	130	8,3	2,203	314	8	263	194	6	183	126	5	120	232	7	218	6,5	1,960	345	8 2	37 29	8 9	208	219	6	148	238	6	195	7,3	1,970	2,044
16	14-янв-2013	20.00	70	84	299	5	231	414	6	324	246	5	212	154	3	133	4,8	2,250	319	5	268	198	4	187	129	3	123	234	2	220	3,5	1,995	351	6 2	43 30	3 5	213	224	5	153	244	6	201	5,5	2,025	2,090
17	21-янв-2013	20.00	77	91	305	6	237	420	6	330	250	4	216	158	4	137	5,0	2,300	324	5	273	202	4	191	132	3 1	126	240	6	226	4,5	2,040	357	6 2	49 30	8 5	218	227	3	156	247	3	204	4,3	2,068	2,136
18	28-янв-2013	20.00	84	98	311	6	243	428	8	338	256	6	222	162	4	141	6,0	2,360	330	6	279	207	5	196	136	4	130	245	5	231	5,0	2,090	363	6 2	55 31	4 6	224	231	4	160	254	7	211	5,8	2,125	2,192
19	4-фев-2013	20.00	91	105	314	3	246	433	5	343	259	3	225	164	2	143	3,3	2,393	334	4	283	209	2	198	138	2	132	248	3	234	2,8	2,118	368	5 2	50 31	7 3	227	234	3	163	258	4	215	3,8	2,163	2,225
20	11-фев-2013	20.00	98	112	317	3	249	438	5	348	264	5	230	167	3	146	4,0	2,433	343	9	292	217	8	206	145	7	139	257	9	243	8,3	2,200	373	5 2	65 32	3 6	233	239	5	168	262	4	219	5,0	2,213	2,282
21	18-фев-2013	20.00	105	119	322	5	254	445	7	355	268	4	234	170	3	149	4,8	2,480	351	8	300	223	6	212	149	4	143	264	7	250	6,3	2,263	379	6 2	71 32	8 5	238	243	4	172	268	6	225	5,3	2,265	2,336
22	25-фев-2013	20.00	112	126	325	3	257	449	4	359	271	3	237	170	0	149	2,5	2,505	356	5	305	226	3	215	151	2	145	267	3	253	3,3	2,295	383	4 2	75 33	$\frac{1}{5}$	241	244	1	173	270	2	227	2,5	2,290	2,363
23	4-мар-2013	20.00	119	133	327	2	259	453	4	363	274	3	240	172	2	151	2,8	2,533	359	3	308	229	3	218	153	2	147	271	4	257	3,0	2,325	385	$\frac{2}{5}$ 2	$\frac{11}{3}$	$\frac{5}{7}$ 4	245	247	3	176	273	3	230	3,0	2,320	2,393
24	11-мар-2013	20.00	120	140	330	3	262	456	5	366	276	2	242	1/5	3	154	2,8	2,560	363	4	312	232	3	221	155	2	149	273	2	259	2,8	2,353	390	$\frac{5}{2}$	82 33	$\frac{1}{2}$	247	249	2	1/8	276	3	233	3,0	2,350	2,421
25	18-мар-2013 25 мар 2012	20.00	133	147	333	3	265	401	2	3/1	279	3	245	170	<u> </u>	150	3,3	2,593	307	4	210	234	2	223	15/	2	151	277	4	263	3,0	2,383	393	3 2	$35 3^{-2}$	$\frac{0}{2}$	250	252		181	280	4	237	3,3	2,383	2,453
20	23-Map-2013	20.00	140	154	226	2	200	404	3	275	201	2	247	1/0	1	157	1,8	2,010	271	2	220	230	2	223	159	2	155	278	1	204	1,0	2,400	<u> </u>	$\frac{4}{2}$	$39 3^{2}$	$\frac{1}{4}$	254	254	$\frac{2}{2}$	105	201	$\frac{1}{2}$	238	2,3	2,403	2,472
27	1-апр-2013 8 апр 2013	20.00	147	168	338	2	208	405	1	375	285	2	249	180	<u> </u>	159	1,0	2,028	371	2	320	230	$\frac{2}{2}$	227	162	<u> </u>	155	280	2	200	2,0	2,420	400	$\frac{3}{2}$	$\frac{32}{24}$	7 3	254	250	$\frac{2}{2}$	187	285	$\frac{2}{2}$	240	$\frac{2,3}{2,3}$	2,420	2,492
20	15-aπp-2013	20.00	161	108	3/1	2	273	409	3	382	285	1	251	18/	3	163	2,3	2,030	376	2	325	240	2	229	16/	$\frac{1}{2}$	158	285	$\frac{3}{2}$	209	2,3	2,443	402	$\frac{2}{3}$ 2	94 <u>5</u> 4	$\frac{1}{9}$	259	250	$\frac{2}{1}$	188	285	$\frac{2}{2}$	242	$\frac{2,3}{2,0}$	2,430	2,514
30	<u>13-апр-2013</u> 22-апр-2013	20.00	168	182	342	1	273	475	3	385	288	2	254	184	0	163	1.5	2,075	379	3	323	242	1	231	165	<u> </u>	150	285	1	271	2,0	2,403	403	3 3	$\frac{1}{10}$	$\frac{2}{1}$	257	261	$\frac{1}{2}$	190	207	3	244	2,0	2,470	2,554
31	22-апр-2013 29-апр-2013	20.00	175	189	343	1	275	479	4	389	200	2	254	185	1	164	$\frac{1,5}{2,0}$	2,000	380	1	320	245	2	232	166	1 ·	160	288	2	272	1,5	2,470	410	$\frac{3}{2}$ 3	$\frac{30}{12}$ 35	$\frac{1}{3}$ 2	263	262	$\frac{2}{1}$	191	291	1	247	1.5	2,475	2,334
32	6-май-2013	20.00	182	196	345	2	273	481	2	391	292	2	258	185	0	164	1.5	2,710	383	3	332	243	2	234	167	1	161	200	2	274	$\frac{1,5}{20}$	2,73	412	$\frac{2}{2}$ 3	$\frac{32}{34}$	$\frac{5}{5}$ 2	265	262	$\frac{1}{2}$	193	293	$\frac{1}{2}$	250	$\frac{1,3}{20}$	2,310 2 530	2,571
33	13-май-2013	20.00	189	203	346	1	278	483	2	393	293	1	259	185	0	164	1,0	2,725	384	1	333	248	1	237	168	1	162	290	0	276	0.8	2,510	413	1 3	05 35	$\frac{5}{6}$ 1	265	265	$\frac{2}{1}$	194	295	2	252	13	2,530 2,543	2,599
34	20-май-2013	20.00	196	210	347	1	279	487	4	397	294	1	260	185	0	164	1.5	2,750	386	2	335	248	0	237	168	0	162	291	1	277	0.8	2.528	415	$\frac{1}{2}$ 3	35 35	8 2	268	265	0	194	296	$\frac{-}{1}$	253	1,3	2,555	2.611
35	27-май-2013	20.00	203	217	348	1	280	490	3	400	296	2	262	186	1	165	1.8	2,768	387	1	336	250	2	239	170	2	164	292	1	278	1.5	2,543	417	2 3	09 35	9 1	269	266	$\frac{1}{1}$	195	297	1	254	1.3	2.568	2.626
36	3-июн-2013	20.00	210	224	350	2	282	491	1	401	297	1	263	186	0	165	1,0	2,778	388	1	337	250	0	239	171	1	165	293	1	279	0,8	2,550	418	1 3	10 36	0 1	270	267	1	196	299	2	256	1,3	2,580	2,636
37	10-июн-2013	20.00	217	231	351	1	283	493	2	403	297	0	263	186	0	165	0,8	2,785	390	2	339	251	1	240	171	0	165	295	2	281	1,3	2,563	420	2 3	12 36	1 1	271	268	1	197	299	0	256	1,0	2,590	2,646
38	17-июн-2013	20.00	224	238	352	1	284	494	1	404	297	0	263	187	1	166	0,8	2,793	391	1	340	251	0	240	171	0	165	296	1	282	0,5	2,568	421	1 3	13 36	2 1	272	269	1	198	300	1	257	1,0	2,600	2,654
39	24-июн-2013	20.00	231	245	353	1	285	495	1	405	298	1	264	187	0	166	0,8	2,800	392	1	341	252	1	241	171	0	165	297	1	283	0,8	2,575	422	1 3	14 36	3 1	273	269	0	198	300	0	257	0,5	2,605	2,660
40	1-июл-2013	20.00	238	252	353	0	285	496	1	406	299	1	265	187	0	166	0,5	2,805	392	0	341	252	0	241	171	0	165	297	0	283	0,0	2,575	422	0 3	14 36	4 1	274	270	1	199	300	0	257	0,5	2,610	2,663

Журнал отсчетов по тензометрам ТА-2-1 системы Аистова Н. Н. при определении продольных деформаций железобетонных призм серии № 1

Примечание – здесь обозначено: *С* – отсчет по лимбу тензометра, ΔC – разность смежных отсчетов, $\Sigma \Delta C$ – приращение показаний, ΔC_{cp} – усредненная разность смежных отсчетов.

Hav	чало испытани	й:		5-ноя-	-2012																																								
Ок	ончание испыт	аний:		1-июл	1-2013																																								
		K]	: yT	L						УП	[-5 (06	бразец	№ 80)											УП-	-6 (Обр	разец Ј	№ 81)										УП	-7 (Обра	зец № 8	32)					$p. 0^{-3}$
	_	IATR La	кит й, с	ст cy ₁		3	аводск	кой но	мер те	ензоме	етра, н	юмер 1	грани і	тризмы	I			$p_{.}$			Заводс	кой но	мер те	ензоме	тра, но	омер г	рани п	ризмь	Ы			$p_{.}$		Заво	одской	номер	тензоме	стра, ном	ер гран	ни пр	ИЗМЫ			<u>ь</u> ,) ⁻ (х1(
1/П	Дата	н сн	КІГО	зрас На,		№ 30			<u>№</u> 29)		<u>№</u> 32	-	_	№ 31		cb	де(×1(<u>№</u> 38			<u>№</u> 87			<u>№</u> 86	_	-	<u>№</u> 88		cb	де(×1(J	<u>∿</u> 40		Nº 17	2	No	169	Ť	No	171	65	Де(×I(MT.
Å	испытания	ems	цод ЫТ8	Boc		1			2			3			4		ΔC	0 0 0		1			2			3			4		ΔC	00.0 6		1		2			3		2	1		00	HOC 31
		Bp	П]	õe	С	ΔC	$\Sigma \Delta C$	С	ΔC	$\Sigma \Delta C$	С	ΔC	$\Sigma \Delta C$	С	ΔC	$\Sigma \Delta C$		∑∆(С	ΔC	$\Sigma \Delta C$	С	ΔC	$\Sigma \Delta C$	С	ΔC	$\Sigma \Delta C$	С	ΔC	$\Sigma \Delta C$		∑∆(С	$\Delta C = \Sigma \Delta$	CC	ΔC	$\Sigma \Delta C$	$C \land A$	$\frac{C}{\Delta}$	ΔC	$C = \Delta t$	$C \mid \Sigma \Delta$	\overline{C}	HTC	∑∆(cepi
1					85	0	0	92	0	0	17	0	0	64	0	0	0.0	0.000	54	0	2	3	0	0	81	0	0	38	0	0	0.0	0.000	6	0 0	2	3 0	0	32	$\frac{1}{0}$		78 ($\frac{1}{2}$) 0(
2	5-ноя-2012	19.00	0	14	158	73	73	159	67	67	67	50	50	119	55	55	61.3	0.613	77	23	23	32	29	29	114	33	33	67	29	29	28.5	0.285	58	52 52	2 7	1 48	48	79	47 4	7 1	124 4	$\frac{6}{6}$	6 48.	3 0.4	83 0.460
3		20.00			185	27	100	177	18	85	172	105	155	130	11	66	40,3	1.015	81	4	27	39	7	36	114	0	33	74	7	36	4.5	0,330	65	7 59	9 7	4 3	51	83	4 5	1 1	132 8	3 54	4 5,5	0.5	38 0,628
4	6-ноя-2012	20.00	1	15	201	16	116	188	11	96	172	0	155	138	8	74	8,8	1,103	85	4	31	46	7	43	113	-1	32	78	4	40	3,5	0,365	67	2 6	1 74	4 0	51	77	-6 4.	5 1	141 9) 6.	3 1,3	0,5:	50 0,673
5	7-ноя-2012	20.00	2	16	213	12	128	198	10	106	172	0	155	147	9	83	7,8	1,180	90	5	36	54	8	51	116	3	35	84	6	46	5,5	0,420	72	5 60	5 7	9 5	56	74	-3 42	2 1	148 7	/ 7(J 3,5	0,5	35 0,728
6	8-ноя-2012	20.00	3	17	225	12	140	206	8	114	173	1	156	153	6	89	6,8	1,248	93	3	39	59	5	56	121	5	40	88	4	50	4,3	0,463	76	4 70	0 8	3 4	60	74	0 42	2 1	152 4	↓ 7 [∠]	4 3,0	0,6	15 0,775
7	12-ноя-2012	20.00	7	21	245	20	160	221	15	129	176	3	159	165	12	101	12,5	1,373	101	8	47	68	9	65	131	10	50	95	7	57	8,5	0,548	88	12 82	2 9	9 16	76	75	1 4.	3 1	164 <u>1</u> ′	2 86	5 10,	3 0,7	18 0,880
8	19-ноя-2012	20.00	14	28	272	27	187	240	19	148	182	6	165	180	15	116	16,8	1,540	112	11	58	81	13	78	144	13	63	105	10	67	11,8	0,665	103	15 97	7 12	23 24	100	81	6 49	9 1	178 1/	4 10	0 14,	3 0,86	55 1,023
9	26-ноя-2012	20.00	21	35	291	19	206	253	13	161	184	2	167	190	10	126	11,0	1,650	119	7	65	90	9	87	154	10	73	112	7	74	8,3	0,748	115	12 10	9 12	.7 4	104	86	5 54	4 1	188 10	0 11	0 7,8	, 0,94	43 1,114
10	3-дек-2012	20.00	28	42	308	17	223	265	12	173	189	5	172	201	11	137	11,3	1,763	128	9	74	102	12	99	163	9	82	120	8	82	9,5	0,843	128	13 12	13	8 11	115	92	6 60	0 1	199 1	1 12	.1 10,	3 1,04	45 1,217
11	10-дек-2012	20.00	35	49	320	12	235	273	8	181	194	5	177	207	6	143	7,8	1,840	135	7	81	110	8	107	169	6	88	124	4	86	6,3	0,905	133	5 12	.7 14	5 7	122	96	4 64	4 2	202 3	<u>, 12</u>	4 4,8	1,09)3 1,279
12	17-дек-2012	20.00	42	56	334	14	249	284	11	192	198	4	181	216	9	152	9,5	1,935	140	5	86	117	7	114	177	8	96	129	5	91	6,3	0,968	147	14 14	1 15	5 10	132	102	<u>6 7(</u>	$\frac{0}{2}$	<u>214 12</u>	$\frac{2}{13}$	<u>6 10,</u>	5 1,19)8 1,367
13	24-дек-2012	20.00	49	63	340	6	255	288	4	196	201	3	184	220	4	156	4,3	1,978	144	4	90	122	5	119	182	5	101	132	3	94	4,3	1,010	152	5 14	·6 16	0 5	137	104	$\frac{2}{1}$ $\frac{7}{2}$	$\frac{2}{2}$	$\frac{218}{10}$ 4	$\frac{14}{14}$	$\frac{0}{1}$ 4,0	1,23	38 1,409
14	31-дек-2012	20.00	56	/0	343	3	258	290	2	198	202		185	220	0	156	1,5	1,993	144	0	90	124	2	121	185	1	102	134	2	96	1,3	1,023	154	2 14	8 10		143	105	$\frac{1}{0}$ 7	$\frac{3}{2}$	$\frac{219}{224}$	14	1 2,5	1,26	03 1,426
15	/-янв-2013	20.00	03	// 9/	254	/	203	294	4	202	204	2	18/	220	0	164	4,8	2,040	149	2	95	128	4	125	18/	4	100	13/	3 2	99 101	4,0	1,003	159	<u> </u>	3 IC	$\frac{100}{12}$ $\frac{100}{12}$	145	105	$\frac{0}{6}$ 7	$\frac{3}{0}$	24 5	$\frac{14}{2}$	0 3,0	1,25	75 1,405 25 1,409
17	14-янв-2013 21 дир 2013	20.00	70	04	358	4	209	301		203	200	2	109	220	2	167	2,0	2,008	154	2	90 100	131	3	120	190	3	109	139	2	101	2,0	1,090	165	4 15	0 17	2 4	149	111	$\frac{0}{1}$ 8	$\frac{3}{0}$ $\frac{2}{7}$	$\frac{27}{230}$	14	$\frac{9}{2}$ $\frac{4,3}{2}$	$\frac{1,3}{1,3}$	60 1 525
18	21-янв-2013	20.00	84	98	363	5	273	304	3	207	200	2	193	234	3	170	3,3	2,100	157	2	100	134	4	135	196	3	112	141	2	105	33	1 1 1 4 8	170	4 16	4 17	<u> </u>	152	112	$\frac{1}{2}$ $\frac{30}{8'}$	$\frac{3}{2}$	<u>.30 3</u> 233 5	13	$\frac{2}{5}$ 3(1,30	$\frac{00}{1,525}$
19	<u>4-фев-2013</u>	20.00	91	105	365	2	280	306	2	212	211	1	194	236	2	172	1.8	2,150	159	2	105	140	2	137	198	2	117	145	1	107	1.8	1,165	173	3 16	7 18	1 3	158	115	1 8'	$\frac{3}{3}$ 7	235 2	$\frac{15}{2}$	5 3,0 57 2.3	1.4	13 1.576
20	11-фев-2013	20.00	98	112	367	2	282	306	0	214	212	1	195	237	1	173	1.0	2.160	160	1	106	141	1	138	199	1	118	146	1	108	1.0	1,135	174	1 16	in 18	4 3	161	117	2 8'	5 7	236 1	1 15	$\frac{7}{8}$ 1.8	, 1.4	30 1.588
21	18-фев-2013	20.00	105	119	372	5	287	309	3	217	213	1	196	239	2	175	2,8	2,188	162	2	108	145	4	142	202	3	121	147	1	109	2,5	1,200	178	4 17	2 18	8 4	165	117	0 8.	5 2	239 3	3 16	1 2,8	, 1,4	58 1,615
22	25-фев-2013	20.00	112	126	374	2	289	311	2	219	213	0	196	240	1	176	1,3	2,200	163	1	109	145	0	142	204	2	123	148	1	110	1,0	1,210	179	1 17	3 18	9 1	166	118	1 8/	6 2	239 () 16	0,8	, 1,40	55 1,625
23	4-мар-2013	20.00	119	133	376	2	291	312	1	220	213	0	196	241	1	177	1,0	2,210	165	2	111	147	2	144	205	1	124	149	1	111	1,5	1,225	181	2 17	5 18	9 0	166	119	1 8'	7 2	241 2	2 16	3 1,3	, 1,4	78 1,638
24	11-мар-2013	20.00	126	140	379	3	294	314	2	222	214	1	197	242	1	178	1,8	2,228	166	1	112	150	3	147	206	1	125	150	1	112	1,5	1,240	183	2 17	7 19	0 1	167	119	0 8	7 2	243 2	2 16	5 1,3	1,49	90 1,653
25	18-мар-2013	20.00	133	147	382	3	297	315	1	223	216	2	199	245	3	181	2,3	2,250	168	2	114	152	2	149	208	2	127	151	1	113	1,8	1,258	184	1 17	8 19	1 1	168	120	1 8	8 2	244 1	16	6 1,0	1,50	0 1,669
26	25-мар-2013	20.00	140	154	383	1	298	316	1	224	216	0	199	245	0	181	0,5	2,255	168	0	114	153	1	150	209	1	128	152	1	114	0,8	1,265	185	1 17	9 19	3 2	170	120	0 88	8 2	244 C) 16	6 0,8	1,50)8 1,676
27	1-апр-2013	20.00	147	161	384	1	299	316	0	224	216	0	199	246	1	182	0,5	2,260	169	1	115	154	1	151	210	1	129	152	0	114	0,8	1,273	186	1 18	0 19	5 2	172	121	1 89	9 2	245 1	16	,7 1,3	1,52	20 1,684
28	8-апр-2013	20.00	154	168	385	1	300	316	0	224	217	1	200	246	0	182	0,5	2,265	170	1	116	155	1	152	211	1	130	152	0	114	0,8	1,280	188	2 18	2 19	6 1	173	122	1 90	0 2	246 1	16	8 1,3	1,53	33 1,693
29	15-апр-2013	20.00	161	175	386	1	301	317	1	225	217	0	200	247	1	183	0,8	2,273	170	0	116	155	0	152	211	0	130	153	1	115	0,3	1,283	188	0 18	2 19	07 1	174	122	0 90	0 2	247 1	16	9 0,5	1,53	38 1,698
30	22-апр-2013	20.00	168	182	388	2	303	318	1	226	217	0	200	247	0	183	0,8	2,280	170	0	116	156	1	153	212	1	131	153	0	115	0,5	1,288	189	1 18	3 19	07 0	174	121	<u>·1 89</u>	9 2	247 0) 16	9 0,0	1,53	38 1,702
31	29-апр-2013	20.00	175	189	389	1	304	319	1	227	218	1	201	248	1	184	1,0	2,290	171	1	117	157	1	154	213	1	132	154	1	116	1,0	1,298	190	1 18	4 19	8 1	175	122	$\frac{1}{90}$	$\frac{0}{2}$	<u>248 1</u>	17	0 1,0	1,54	48 1,712
32	6-май-2013	20.00	182	196	390		305	320	1	228	218	0	201	249	1	185	0,8	2,298	172	1	118	159	2	156	215	2	134	154	0	116	1,3	1,310	193	3 18	7 19	9 1	176	122	$\frac{0}{0}$ 90	$\frac{1}{2}$	$\frac{249}{10}$	$\frac{17}{17}$	1 $1,3$	1,56	$\frac{50}{1,723}$
33	13-май-2013	20.00	189	203	393	3	308	321	1	229	218	0	201	249	0	185	1,0	2,308	172	0	118	159	0	156	215	0	134	154	0	116	0,0	1,310	193	0 18			1/6	122	$\frac{0}{0}$ 90	$\frac{3}{2}$	$\frac{249}{249}$ 0	$\frac{1}{17}$	$\frac{1}{1}$ 0,0	1,50	$\frac{50}{62}$ 1,720
25	20-май-2013	20.00	190	210	393 205	2	210	321	1	229	218	0	201	249	1	185	0,5	2,313	1/3	1	119	159	1	157	215	1	134	154	0	110	0,5	1,313	194	$\frac{1}{2}$ 10	$\frac{19}{19}$	$\frac{19}{0}$ 1	1/0	122	$\frac{0}{0}$	$\frac{J}{0}$	$\frac{249}{250}$ 1	$\frac{1}{1}$	$\frac{1}{12}$ 1 (1,50	$\frac{1}{72}$ 1,730
35	27-ман-2013 3-июн-2012	20.00	203	217	393	2	312	324	1	230	210	0	201	250	1	187	13	2,310	173	0	119	161	1	158	210	1	135	154	1	117	0,5	1 373	190	<u> </u>	1 20		177	122		$\frac{3}{6}$	$\frac{.50}{250}$	$\frac{17}{17}$	$\frac{2}{2}$ 1,0	$\frac{1,3}{1,5'}$	75 1 7/3
30	10-июн-2013	20.00	210	231	399	$\frac{2}{2}$	314	325	1	232	218	0	201	252	1	188	1,5	2,330 2,340	173	0	119	162	1	159	210	1	136	155	0	117	0,5	1 323	198	1 19	$\frac{1}{2}$ 20		177	122	$\frac{3}{0}$	$\frac{3}{0}$	$\frac{250}{251}$ 1	$\frac{17}{17}$	$\frac{2}{3}$ 0,3	1,5'	80 1 749
38	17-июн-2013	20.00	224	238	400	1	315	326	1	234	218	0	201	252	0	188	0.5	2,345	173	0	119	162	0	159	217	0	136	155	0	117	0.0	1.328	198	0 19	$\frac{2}{2}$ $\frac{20}{20}$	0 0	177	122	$\frac{3}{0}$ 9	$\frac{2}{0}$	$\frac{151}{252}$ 1	17	4 0 1	1,50	83 1.752
39	24-июн-2013	20.00	231	245	401	1	316	326	0	234	218	0	201	252	0	188	0.3	2.348	173	0	119	162	0	159	218	1	137	155	0	117	0.3	1,330	199	1 19	3 20	1 1	178	122	0 9	$\overline{0}$	253 1	17	5 08	1.5	90 1.756
40	1-июл-2013	20.00	238	252	402	1	317	327	1	235	218	0	201	252	0	188	0,5	2,353	173	0	119	162	0	159	218	0	137	155	0	117	0,0	1,330	199	0 19	3 20	01 0	178	122	0 9	0 2	253 () 17	5 0,0	1,5	90 1,758
-																																								_					

Журнал отсчетов по тензометрам ТА-2-1 системы Аистова Н. Н. при определении продольных деформаций железобетонных призм серии № 2

Примечание – здесь обозначено: *С* – отсчет по лимбу тензометра, ΔC – разность смежных отсчетов, $\Sigma \Delta C$ – приращение показаний, ΔC_{cp} – усредненная разность смежных отсчетов.

Дата изготовления образцов: 22-окт-2012

Нач	ало испытани	й:		5-ноя	-2012																																						
Око	нчание испыт	аний:		1-июл	1-2013																																						
		ви	г. cyт	L						УП-4	1 (Обра:	зец №	83)			-						УІ	1-8 (Обј	оазец №	2 84)									УП	-9 (Обр	разец М	<u>o</u> 85)						ф. 0_3
ц	Пото	нят та	жи ій,	аст су		3ai	водско	ой ном	мер тенз	вометј	ра, ном	ер гран	ни при	ЗМЫ			0^{-3}		Зав	одской	і номер	тензом	етра, но	мер гра	ни пр	ИЗМЫ			ф., 0 ^{_3}		Зав	одской	номер	тензоме	тра, но	мер гр	ани пр	ризмы				0_3 0_3	. де ×1
<u>о</u> П/	дата испытания	I) R	цол анк	озра на,	J	№ 190		N	№ 189		N⁰	191		Nº 2	25	р С	ੇ ਸ਼ੁੱ	J	<u>⁰</u> 43		Nº 4	42		№ 41		N	∿ o 44	5	, ਸੂ × 1 ×		№ 39		№ 1.	57	Л	№ 159		N	№ 158		cb	ы. ₁ х	сит ε,
z	испытания	Dem OT	lpo,	Вс ето		1			2			3		4		∀	Cer		1		2			3			4	_ ĭ	C er		1		2			3			4		V V V	C of	ии
		$\mathbf{B}_{\mathbf{I}}$	I. ист	9	С	$\Delta C \sum$	ΔC	С	$\Delta C \sum$	ΔC	$C \Delta$	$\Delta C = \sum_{i=1}^{n} \Delta C_{i}$	ΔC ($C = \Delta C$	$C \sum \Delta C$		$\sum \Delta$	C	$\Delta C \mid \Sigma $	ΔC (ΔC	$C \sum \Delta C$	С	$\Delta C \sum$	ΔC	C	$\Delta C \mid \Sigma \Delta$	С	Σ_{Δ}	С	$\Delta C \sum$	C (ΔC	$\sum \Delta C$	С	ΔC	$\overline{\Sigma}\Delta C$	С	ΔC '	$\Sigma \Delta C$		$\sum \Delta$	Cep
1		10.00			56	0	0	6	0	0	15	0	0	7 0	0	0,0	0,000	52	0	0 7	5 0	0	69	0	0	26	0 0	0,	0 0,000	64	0) 8) 0	0	75	0	0	73	0	0	0,0	0,000	0,000
2	5-ноя-2012	19.00	0	14	152	96	96	95	89 8	89	83 (68 6	58 9	01 84	84	84,3	0,843	101	49 4	9 13	34 59) 59	160	91	91	102	76 76	5 68	,8 0,688	134	70 7	0 14	4 64	64	152	77	77	143	70	70	70,3	0,703	0,745
3		20.00			185	33 1	129	122	27 1	16	101	18 8	86 1	12 21	105	24,8	1,090	105	4 5	53 14	14 10) 69	178	18 1	109	113	11 87	7 10	,8 0,795	147	13 8	3 15	3 9	73	163	11	88	139	-4	66	7,3	0,775	0,887
4	6-ноя-2012	20.00	1	15	201	16 1	145	136	14 1	30	111	10 9	96 1	26 14	119	13,5	1,225	112	7 6	50 15	54 10) 79	197	19 1	128	126	13 10	0 12	,3 0,918	151	4 8	7 15	5 2	75	172	9	97	123	-16	50	-0,3	0,773	0,972
5	7-ноя-2012	20.00	2	16	214	13 1	158 1	148	12 1	42	123	12 10	08 1	38 12	2 131	12,3	1,348	116	4 6	64 16	51 7	86	208	11 1	139	133	7 10	7 7,	3 0,990	152	1 8	8 16	0 5	80	172	0	97	111	-12	38	-1,5	0,758	1,032
6	8-ноя-2012	20.00	3	17	224	10 1	168 1	153	5 1	47	129	6 1	14 1	46 8	139	7,3	1,420	119	3 6	57 16	67 6	92	216	8 1	147	140	7 11	4 6,	0 1,050	152	0 8	8 16	6 6	86	172	0	97	103	-8	30	-0,5	0,753	1,074
7	12-ноя-2012	20.00	7	21	241	17 1	185 1	171	18 1	65	141	12 12	26 1	60 14	153	15,3	1,573	125	6 7	3 17	77 10) 102	228	12 1	159	154	14 12	8 10	,5 1,155	154	2 9	0 17	7 11	97	163	-9	88	96	-7	23	-0,8	0,745	1,158
8	19-ноя-2012	20.00	14	28	260	19 2	204 1	191	20 1	85	156	15 14	41 1	81 21	174	18,8	1,760	133	8 8	81 19	91 14	116	243	15 1	174	170	16 14	4 13	,3 1,288	164	10 1	00 19	1 14	111	163	0	88	99	3	26	6,8	0,813	1,287
9	26-ноя-2012	20.00	21	35	272	12 2	216 2	204	13 1	98	168	12 1:	53 1	94 13	187	12,5	1,885	140	7 8	38 20	$\frac{1}{1}$	126	252	9	183	185	15 15	9 10	,3 1,390	173	9 1)9 20	$\frac{2}{11}$	122	177	14	102	102	3	29	9,3	0,905	1,393
10	3-дек-2012	20.00	28	42	286	14 2	230 2	218	14 2	12	181	13 10	66 2 77 2	08 14	201	13,8	2,023	146	6 9	$\frac{2}{2}$		136	269	1/ 2	200	198	13 1/	2 11	$\frac{5}{2}$ 1,505	183	10 1	19 2	$\frac{4}{2}$ 12	134	195	18	120	115	13	42	13,3	1,038	1,522
11	10-дек-2012	20.00	35	49 56	295	9 2	239 2	229	11 <u>2</u>	23	192	11 1 10 1	$\frac{11}{97}$ 2	$\frac{15}{27}$ 12	208	9,5	2,118	150	4 9 5 1/	$\frac{18}{02}$ $\frac{24}{22}$	$\frac{20}{5}$ 5	145	281	12 2	212	208	10 18	2 8,	8 1,593	192	9 1	$\frac{28}{24}$ 22	$\frac{3}{2}$ 0	143	209	14	134	125	10	52	10,5	1,143	1,018
12	24 цек 2012	20.00	42	63	303	<u> </u>	247 2	237	<u> </u>	36	202	$\frac{10}{6}$ 10	$\frac{0}{03}$ $\frac{2}{2}$	$\frac{27}{35}$ 8	220	9,5	2,213	155	3 1	$\frac{05}{24}$	$\frac{23}{20}$ $\frac{3}{4}$	150	290	9 4	221	210	6 19 6 10	$\frac{0}{6}$ 0,	$\frac{1,000}{3}$	202	0 1 4 1	$\frac{1}{28}$	2 9 6 1	152	220	7	143	134	5	66	<u>0,0</u>	1,230	1,701
$13 \\ 14$	24-дск-2012 31-лек-2012	20.00	56	70	309	$\frac{3}{1}$ 2	252 2	242	$\frac{3}{1}$ 2	37	208	$\frac{0}{2}$ 10	95 2	36 1	220	1.3	2,273	150	$\frac{3}{2}$ 1	$\frac{00}{22}$	30 1	155	301	3 2	229	222	1 19	$\begin{array}{c c} 0 & 3, \\ 7 & 1 \end{array}$	8 1 730	202	$\frac{4}{2}$ 1	10 2	9 3	150	227	4	152	139	$\frac{3}{2}$	68	$\frac{3,0}{2.8}$	1,200	1,733 1 774
15	7-янв-2013	20.00	63	77	315	$\frac{1}{6}$ 2	259	248	$\frac{1}{5}$ 2	42	217	7 2	$\frac{1}{02}$ $\frac{1}{2}$	43 7	236	6.3	2,203	163	$\frac{2}{3}$ 1	$\frac{11}{23}$	36 6	161	307	6 2	238	229	6 20	$\frac{7}{3}$ 5.	$\frac{1,730}{3}$	204	5 1	15 24	4 5	164	236	5	161	147	6	74	5.3	1,360	1,774
16	14-янв-2013	20.00	70	84	318	3 2	262 2	252	4 2	46	220	3 20	05 2	43 0	236	2.5	2,373	166	3 1	14 23	<u>39</u> 39	164	311	4 2	242	233	4 20	7 3.	5 1.818	212	3 1	18 24	8 4	168	240	4	165	149	2	76	3.3	1.393	1,861
17	21-янв-2013	20.00	77	91	321	3 2	265 2	253	1 2	47	224	4 20	09 2	43 0	236	2,0	2,393	168	2 1	16 24	42 3	167	315	4 2	246	237	4 21	1 3,	3 1,850	215	3 1	51 25	0 2	170	244	4	169	154	5	81	3,5	1,428	1,890
18	28-янв-2013	20.00	84	98	325	4 2	269 2	260	7 2	54	229	5 2	14 2	43 0	236	4,0	2,433	170	2 1	18 24	46 4	171	319	4 2	250	241	4 21	5 3,	5 1,885	219	4 1	55 25	4 4	174	249	5	174	159	5	86	4,5	1,473	1,930
19	4-фев-2013	20.00	91	105	327	2 2	271 2	262	2 2	56	231	2 2	16 2	56 13	8 249	4,8	2,480	172	2 1	20 24	48 2	173	323	4 2	254	243	2 21	7 2,	5 1,910	220	1 1	56 25	7 3	177	251	2	176	161	2	88	2,0	1,493	1,961
20	11-фев-2013	20.00	98	112	328	1 2	272 2	264	2 2	58	234	3 2	19 2	58 2	251	2,0	2,500	173	1 1	21 24	49 1	174	324	1 2	255	244	1 21	8 1,	0 1,920	222	2 1	58 25	7 0	177	253	2	178	161	0	88	1,0	1,503	1,974
21	18-фев-2013	20.00	105	119	331	3 2	275 2	267	3 2	61	237	3 2	22 2	61 3	254	3,0	2,530	175	2 1	23 25	52 3	177	328	4 2	259	248	4 22	2 3,	3 1,953	224	2 1	50 26	0 3	180	257	4	182	163	2	90	2,8	1,530	2,004
22	25-фев-2013	20.00	112	126	332	1 2	276 2	269	2 2	63	238	1 2	23 2	61 0	254	1,0	2,540	175	0 1	23 25	54 2	179	330	2 2	261	250	2 22	4 1,	5 1,968	225	1 1	51 26	2 2	182	258	1	183	163	0	90	1,0	1,540	2,016
23	4-мар-2013	20.00	119	133	333	1 2	277 2	271	2 2	.65	240	2 2	25 2	63 2	256	1,8	2,558	177	2 1	25 25	55 1	180	333	3 2	264	251	1 22	5 1,	8 1,985	226	1 1	52 26	3 1	183	260	2	185	165	2	92	1,5	1,555	2,033
24	П-мар-2013	20.00	126	140	335	$\frac{2}{2}$ 2	279 2	272	1 2	66	242	$\frac{2}{2}$ 2	$\frac{27}{20}$	$\frac{66}{3}$	259	2,0	2,578	177	0 1	$\frac{25}{25}$ $\frac{25}{25}$	$\frac{57}{2}$	182	335	$\frac{2}{2}$	266	253	2 22	7 1,	5 2,000	228	2 1	64 26	$\frac{5}{7}$ 2	185	262	2	187	168	3	95	2,3	1,578	2,052
25	18-мар-2013	20.00	133	14/	337	2 2	281 4	273	$\frac{1}{1}$	6/	244	$\frac{2}{1}$ $\frac{2}{2}$	$\frac{29}{20}$ 2	$\frac{68}{2}$	261	1,8	2,595	1/8	1 1. 1 1.	$\frac{26}{27}$ $\frac{25}{24}$	$\frac{59}{2}$	184	337	2 2	268	233	2 22	9 1,	8 2,018	229		$\frac{5}{5}$ 20	$\frac{1}{2}$	18/	264	2	189	169	$\frac{1}{2}$	96	1,5	1,593	2,069
20	<u>25-мар-2013</u> 1 апр 2013	20.00	140	154	330	$\frac{1}{1}$ $\frac{2}{2}$	282 2	274	$\begin{array}{c c} 1 & 2 \\ \hline 1 & 2 \end{array}$	60 60	245	$\frac{1}{1}$ 2.	$\frac{30}{31}$ 2	09 I 70 I	262	1,0	2,005	1/9	1 1. 1 1 ⁴	$\frac{21}{28}$ $\frac{23}{26}$	$\frac{59}{51}$ 0	184	340	2 2	270	255		9 0, 0	$\frac{8}{3}$ 2,025	229	0 1	55 - 20	$\frac{\delta}{0}$ 1	188	200	1	191	1/1	$\frac{2}{2}$	98	1,3	1,005	2,078
27	<u>1-апр-2013</u> 8-апр-2013	20.00	147	168	339	$\frac{1}{0}$ 2	283 2	275	$\frac{1}{1}$ 2	70	240	$\frac{1}{1}$ 2.	$\frac{31}{32}$ 2	70 1	263	0.8	2,013	181	1 1 ⁴	20 20 29 26	$\frac{51}{54}$ 3	180	340	$\frac{1}{2}$	271	258	$\frac{1}{2}$ 23	$\frac{0}{2}$ 1,	$\frac{5}{2,058}$	230	$\frac{1}{1}$ 1	57 20	$\frac{9}{1}$	109	267	1	192	175	$\frac{2}{2}$	100	1,3	1,018	2,090
29	15-aπp-2013	20.00	161	175	340	$\frac{0}{1}$ 2	284	277	$\frac{1}{1}$ 2	71	248	$\frac{1}{1}$ 2	$\frac{32}{33}$ 2	72 1	265	1.0	2,633	181	0 1	$\frac{29}{29}$ 26	55 1	190	342	$\frac{2}{0}$ 2	273	259	$\frac{2}{1}$ 23	$\frac{2}{3}$ 0	5 2,050	231	$\frac{1}{0}$ 1	57 25	$\frac{0}{0}$ 0	190	268	0	193	176	1	102	$\frac{1,3}{0.3}$	1,030	2,104 2,110
30	<u>22-апр-2013</u>	20.00	168	182	340	0 2	284 2	278	$\frac{1}{1}$ $\frac{2}{2}$	72	249	1 2	34 2	73 1	266	0.8	2,633	181	0 1	$\frac{29}{29}$ 26	55 0	190	344	2 2	275	261	2 23	5 1.	0 2.073	232	1 1	58 27	1 1	191	270	2	195	177	1	103	1.3	1,635	2,119
31	29-апр-2013	20.00	175	189	341	1 2	285 2	280	2 2	.74	250	1 2	35 2	74 1	267	1,3	2,653	182	1 1	30 26	56 1	191	345	1 2	276	262	1 23	6 1,	0 2,083	232	0 1	58 27	2 1	192	272	2	197	178	1	105	1,0	1,655	2,130
32	6-май-2013	20.00	182	196	342	1 2	286 2	281	1 2	75	251	1 2	36 2	75 1	268	1,0	2,663	182	0 1	30 26	57 1	192	347	2 2	278	263	1 23	7 1,	0 2,093	233	1 1	59 27	3 1	193	273	1	198	180	2	107	1,3	1,668	2,141
33	13-май-2013	20.00	189	203	343	1 2	287 2	282	1 2	76	252	1 2	37 2	76 1	269	1,0	2,673	182	0 1	30 26	67 0	192	348	1 2	279	264	1 23	8 0,	5 2,098	233	0 1	59 27	3 0	193	275	2	200	181	1	108	0,8	1,675	2,149
34	20-май-2013	20.00	196	210	343	0 2	287 2	283	1 2	77	253	1 2	38 2	76 0	269	0,5	2,678	182	0 1	30 26	57 0	192	350	2 2	281	265	1 23	9 0,	8 2,105	233	0 1	59 27	3 0	193	276	1	201	181	0	108	0,3	1,678	2,154
35	27-май-2013	20.00	203	217	344	1 2	288 2	284	1 2	78	253	0 2	38 2	77 1	270	0,8	2,685	182	0 1	30 26	58 1	193	351	1 2	282	266	1 24	0 0,	8 2,113	233	0 1	59 27	4 1	194	278	2	203	182	1	109	1,0	1,688	2,162
36	3-июн-2013	20.00	210	224	345	1 2	289 2	286	2 2	80	254	1 2	39 2	77 0	270	1,0	2,695	182	0 1	30 26	58 0	193	352	1 2	283	267	1 24	1 0,	5 2,118	233	0 1	59 27	4 0	194	279	1	204	182	0	109	0,3	1,690	2,168
37	10-июн-2013	20.00	217	231	346	1 2	290 2	287	1 2	81	255	1 24	40 2	79 2	272	1,3	2,708	182	0 1	30 26	59 1	194	352	0 2	283	269	2 24	3 0,	8 2,125	233	0 1	59 27	6 2	196	281	2	206	184	2	111	1,5	1,705	2,179
38	17-июн-2013	20.00	224	238	346	0 2	290 2	287	0 2	81	255	0 24	40 2	80 1	273	0,3	2,710	182	0 1	30 27	70 1	195	352	0 2	283	270	1 24	4 0,	5 2,130	234	1 1	70 27	7 1	197	282	1	207	185	1	112	1,0	1,715	2,185
39	24-июн-2013	20.00	231	245	347	1 2	291 2	287	$\frac{0}{2}$	81	255	$\frac{0}{1}$	40 2	80 0	273	0,3	2,713	182	0 1	30 27	$\frac{70}{10}$ 0	195	352	0 2	283	270	0 24	4 0,	0 2,130	234	0 1	$\frac{10}{27}$	7 0	197	282	0	207	185	0	112	0,0	1,715	2,186
40	1-июл-2013	20.00	238	252	348	1 2	292 2	289	2 2	83	256	1 24	41 2	81 1	274	1,3	2,725	182	0 1	30 27	/0 0	195	352	0 2	283	270	0 24	4 0,	0 2,130	234	0 1	/0 27	/ 0	197	283	1	208	185	0	112	0,3	1,718	2,191

Журнал отсчетов по тензометрам ТА-2-1 системы Аистова Н. Н. при определении продольных деформаций железобетонных призм серии № 3

Примечание – здесь обозначено: C – отсчет по лимбу тензометра, ΔC – разность смежных отсчетов, $\Sigma \Delta C$ – приращение показаний, ΔC_{cp} – усредненная разность смежных отсчетов.

Дата изготовления образцов: 22-окт-2012

Рис. 3.7.4. Зависимость относительных деформаций железобетонных призм от продолжительности испытания и величины нагрузки

109

3.8. Обработка результатов экспериментальных исследований. Численный анализ

В результате длительного эксперимента установлено, что в момент загружения образцов деформации ползучести бетона не проявляются, поэтому характеристика ползучести $\phi_t = 0$. В таблицах 3.8.1 – 3.8.4 приведен процесс и результаты определения характеристики ползучести бетона для образцов серий $\mathbb{N} \ 1 - 3$. В качестве примера ниже рассмотрим методику получения характеристики ползучести ϕ_t для образцов серии $\mathbb{N} \ 1$ при продолжительности испытания 1 сут. (см. п. 2 табл. 3.8.1, 3.8.2). Остальные пункты таблиц 3.8.1 – 3.8.4 заполнены аналогично.

Прочности бетона R_{κ} и R_b определены по формуле (3.7.3):

$$R_{\rm k}(15) = 193,0 \,{\rm krc/cm}^2;$$
 $R_b(15) = 142,1 \,{\rm krc/cm}^2.$

Зависимость модуля упругости бетона E_b от прочности R_{κ} установлена по формуле (3.7.4):

$$E_b(15) = 280482 \text{ кгс/см}^2.$$

Коэффициенты *a*, *b*, *c*, *d* и *e*, входящие в слагаемые ряда (2.1.15), для возраста бетона 15 сут. определены по формулам (2.1.17) – (2.1.21):

$$a = 35,65 \cdot 10^{-7};$$
 $b = 139,89 \cdot 10^{-10};$ $c = 61,20 \cdot 10^{-12};$
 $d = 292,55 \cdot 10^{-15};$ $e = 149,68 \cdot 10^{-17}.$

Величину напряжения в одном стержне σ_s (при 4-х стержнях на сечение) находим по формуле

$$\sigma_s = \frac{1}{4} \varepsilon E_s ,$$

где $E_s = 2,0.10^5$ МПа = $2,0.10^6$ кгс/см² [118, п. 5.2.10] и [119, п. 6.2.12], $\sigma_s(15) = 459,0$ кгс/см².

Экспериментальную величину напряжения в бетоне σ_b определим по формуле (2.2.10):

$$\sigma_b(15) = 106,42 \text{ krc/cm}^2.$$

Теоретическое прогнозирование изменения напряжений в бетоне во времени осуществляем по формуле (2.2.36) при подстановки коэффициента $\phi_{\infty} = 1,0$ (в соответствии с СП [118, 119]):

$$\sigma_b = 107,37 \text{ кгс/см}^2$$
.

В *Eurocode* 2 [156] коэффициент ползучести при относительной влажности 50 % изменяется в пределах от 0,0 до 7,0. В российских нормах СП коэффициент ползучести принимается в зависимости от влажности в интервале от 1,0 до 5,6. В столбцах 7 – 11 приведены результаты расчетов напряжений σ_b по формуле (2.2.36) при коэффициентах $\phi_{\infty} = 2,0; 3,0; 4,0; 5,0$ и 6,0.

При уровне загружения бетона $\eta = \frac{\sigma_b}{R_b} = \frac{106,42}{142,1} = 0,75$ параметр $\beta = 0,0045$ (табл. 1.2.1), тогда по формуле (2.2.6) коэффициент

$$\Psi = 0,008413.$$

Влияние мгновенной нелинейности бетона и способов аппроксимации диаграммы мгновенного деформирования бетона (см. рис. 2.1.1) на характеристику ползучести устанавливаем по формулам (2.2.21), (2.2.25), (2.2.27), (2.2.29) и (2.2.31), результаты расчетов приведены в столбцах 16, 18, 20, 22 и 24 п. 2 табл. 3.8.2.

В столбцах 17, 19, 21, 23 и 25 приведена теоретическая предельная величина характеристики ползучести, полученная из формулы

$$\varphi_{\infty}=\frac{\varphi_t}{1-e^{-bt}},$$

где *b* = 0,03.

Установлено, что при расчёте сжатых железобетонных элементов и использовании коэффициента $\phi_{\infty} = 1,0$, как это требуется в российских нормах СП [118, 119], отличия между экспериментальными и теоретическими кривыми напряжений достигает 29 %. Аналогичные результаты получены и для образцов серий № 2 и 3. Таким образом, российские нормы завышают напряжения в бетоне, и, следовательно, занижают напряжения в арматуре от действительных

значений. В связи с этим, возможна ситуация, когда фактические напряжения в арматуре достигли предела текучести, а расчет по СП этого не учитывает.

Изменение напряжений в арматурном стержне испытанных образцов приведено на рис. 3.8.1. На рис. 3.8.2 показан характер уменьшения напряжений в бетоне в образцах серии № 1, полученный в результате экспериментальных исследованиях в данной работе и в результате расчета по формуле (2.2.36), где кривая 1 соответствует изменению напряжений при коэффициенте ползучести $\phi_{\infty} = 1,0,$ а кривые 2 – 6 соответственно $\phi_{\infty} = 2,0;$ 3,0; 4,0; 5,0; 6,0.

Таблица	3	8.	1
1 0000000000	~.	\mathbf{v} .	

Результаты показателей бетона R_{κ} , R_{b} , E_{b} и коэффициентов a, b, c, d и e

X	ст сут	итель- ыт, сут.	форму- обакова	форму- обакова	форму- рафа	в Опытные коэффициенты					
<u>№</u> п/п	Возра бетона,	Продолжи ность испь	Rкпо ле Щер	$R_b \text{ no } \mathbf{G}$	$E_b \mod G$	<i>a</i> , ×10 ⁻⁷	$b, \times 10^{-10}$	$c, \times 10^{-12}$	d, ×10 ⁻¹⁵	<i>e</i> , ×10 ⁻¹⁷	
1	1.4		100 /	KIC/CM	276045	26.11	146.00	65.97	202.40	160 77	
1	14	0	188,4	138,7	276945	36,11	140,28	65,87	323,42	169,77	
2	15	1	193,0	142,1	280482	35,05	139,89	01,20 57,21	292,55	149,08	
3	10	2	197,2	145,2	283043	35,20	134,42	52.06	207,51	133,78	
4	1/	3	201,1	148,1	280520	34,90	129,59	33,90	240,40	120,08	
5	21	/	214,4	137,9	293930	33,79 33,59	113,03 00 00	44,30	100,00	80,30 59 39	
0	20 25	14 21	231,1	170,2	21/129	34,50	99,99	35,20	137,01	30,20 45.10	
/ 0	42	21	242,7	1/0,/	314130	21 22	91,21	30,27	06.07	43,10	
0	42	20	257.8	183,0	319171	31,33	03,42 81.27	27,17 25.02	90,97	37,30	
9	4) 56	42	257,0	109,9	322932	30,90	78.25	23,03	70.80	32,71	
10	63	42	203,0	195,7	323838	30,09	75,23	23,32	77,50	29,40	
12	70	- -	207,2	199.3	320137	30,47	73,90	21,57	70.69	25,33	
13	70	63	273,6	201.5	331588	30.16	72 53	21,30 20.77	67.46	23,35	
14	84	70	275,0	201,3	332903	30.04	71.30	20,19	64 95	22,09	
15	91	70	278,1	203,5	333998	29.94	70.23	19 70	62.81	21,75	
16	98	84	270,2	206.3	334980	29,85	69.31	19.28	61.01	21,00	
17	105	91	281.7	207.5	335801	29.78	68.53	18.92	59.51	20.44	
18	112	98	283.2	208.6	336566	29,71	67.83	18,61	58.18	19.87	
19	119	105	284.5	209.5	337225	29.65	67.27	18.36	57.13	19,43	
20	126	112	285,7	210,4	337831	29,60	66,71	18,11	56,09	18,99	
21	133	119	286,7	211,2	338333	29,56	66,22	17,89	55,18	18,61	
22	140	126	287,7	211,9	338833	29,51	65,79	17,70	54,40	18,28	
23	147	133	288,5	212,5	339232	29,48	65,43	17,54	53,75	18,01	
24	154	140	289,3	213,1	339630	29,44	65,07	17,39	53,10	17,74	
25	161	147	290,1	213,6	340026	29,41	64,78	17,26	52,58	17,52	
26	168	154	290,7	214,1	340322	29,38	64,48	17,13	52,05	17,30	
27	175	161	291,4	214,6	340667	29,35	64,19	17,00	51,53	17,09	
28	182	168	292,0	215,0	340962	29,33	63,96	16,90	51,12	16,92	
29	189	175	292,5	215,4	341207	29,31	63,72	16,80	50,72	16,75	
30	196	182	293,0	215,8	341452	29,29	63,49	16,70	50,31	16,59	
31	203	189	293,5	216,1	341696	29,27	63,32	16,63	50,02	16,47	
32	210	196	293,9	216,5	341891	29,25	63,09	16,53	49,61	16,30	
33	217	203	294,3	216,8	342086	29,23	62,92	16,46	49,32	16,18	
34	224	210	294,7	217,0	342280	29,22	62,81	16,41	49,13	16,10	
35	231	217	295,1	217,3	342474	29,20	62,64	16,34	48,84	15,99	
36	238	224	295,4	217,6	342620	29,19	62,47	16,27	48,55	15,87	
37	245	231	295,7	217,8	342765	29,17	62,36	16,22	48,36	15,79	
38	252	238	296,1	218,0	342958	29,16	62,24	16,17	48,17	15,71	

	Т	г. г.	ІЯ,	Напр. в			Напряж	сения в бе	тоне по			Б	Коэфф	рициенты		Xa	арактерис	стика пол	ізучести с	ρ_t с испол	пьзовани	ем модел	ей	
№	acT 1, cy	тжи , су	таци 0 ⁻³	арматуре			форм	мулам, кго	с/см ²			ень сени			Лине	йная	Нел	инейная	при аппр	оксимац	ии криво	й уравне	нием (2.1	.15)
п/п	Возр тона	одо. Пыт.	þop∧ ε×1	(в одном стержне),				(2.2.36)	при φ _∞ =			/ров груж	β	Ψ	Закон	Гука	5 члено	ов ряда	4 член	а ряда	3 член	а ряда	2 член	а ряда
	0e	Пр ис	Де	кгс/см ²	(2.2.10)	1,0	2,0	3,0	4,0	5,0	6,0	33			φ_t	ϕ_{∞}	φ_t	ϕ_{∞}	φ_t	ϕ_{∞}	φ_t	ϕ_{∞}	φ_t	ϕ_{∞}
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1	14	0	0,847	423,5	107,54	107,54	107,54	107,54	107,54	107,54	107,54	0,78	0,0048	0,008804	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2	15	1	0,918	459,0	106,42	107,37	107,20	107,03	106,85	106,68	106,51	0,75	0,0045	0,008413	0,131	4,432	0,111	3,756	0,112	3,790	0,110	3,722	0,107	3,620
3	16	2	0,990	495,0	105,28	107,20	106,86	106,53	106,19	105,86	105,53	0,73	0,0043	0,008063	0,271	4,654	0,228	3,915	0,231	3,967	0,227	3,898	0,221	3,795
4	17	3	1,077	538,5	103,90	107,04	106,54	106,05	105,55	105,06	104,57	0,70	0,0040	0,007729	0,446	5,182	0,374	4,345	0,380	4,415	0,374	4,345	0,364	4,229
5	21	7	1,208	604,0	101,83	106,44	105,35	104,28	103,21	102,15	101,11	0,64	0,0034	0,006854	0,739	3,901	0,618	3,263	0,628	3,315	0,620	3,273	0,607	3,205
6	28	14	1,368	684,0	99,30	105,55	103,60	101,69	99,81	97,97	96,16	0,58	0,0028	0,005903	1,135	3,309	0,948	2,764	0,964	2,811	0,956	2,788	0,940	2,741
7	35	21	1,490	745,0	97,37	104,84	102,21	99,64	97,14	94,70	92,32	0,54	0,0024	0,005314	1,461	3,126	1,221	2,612	1,242	2,657	1,234	2,640	1,217	2,604
8	42	28	1,683	841,5	94,31	104,26	101,09	98,01	95,02	92,12	89,32	0,51	0,0021	0,004824	1,990	3,502	1,663	2,926	1,695	2,983	1,685	2,965	1,665	2,930
9	49	35	1,788	894,0	92,65	103,80	100,19	96,70	93,33	90,09	86,95	0,49	0,0019	0,004504	2,304	3,544	1,927	2,964	1,965	3,023	1,955	3,007	1,934	2,975
10	56	42	1,883	941,5	91,15	103,42	99,46	95,65	91,99	88,47	85,08	0,47	0,0017	0,004255	2,596	3,624	2,174	3,035	2,218	3,096	2,208	3,082	2,185	3,050
11	63	49	1,942	971,0	90,21	103,12	98,88	94,81	90,91	87,18	83,59	0,46	0,0016	0,004075	2,788	3,620	2,336	3,033	2,384	3,096	2,374	3,083	2,352	3,054
12	70	56	1,971	985,5	89,75	102,87	98,41	94,14	90,05	86,14	82,40	0,45	0,0015	0,003948	2,889	3,551	2,424	2,979	2,474	3,041	2,464	3,028	2,441	3,000
13	77	63	2,044	1022,0	88,60	102,67	98,03	93,59	89,36	85,31	81,45	0,44	0,0014	0,003802	3,126	3,682	2,623	3,090	2,679	3,156	2,669	3,144	2,646	3,117
14	84	70	2,090	1045,0	87,87	102,51	97,72	93,15	88,80	84,65	80,69	0,43	0,0013	0,003696	3,281	3,739	2,755	3,139	2,815	3,208	2,805	3,196	2,781	3,169
15	91	77	2,136	1068,0	87,14	102,38	97,47	92,80	88,35	84,11	80,07	0,43	0,0013	0,003598	3,438	3,817	2,887	3,205	2,952	3,277	2,942	3,266	2,917	3,238
16	98	84	2,192	1096,0	86,25	102,28	97,27	92,51	87,98	83,68	79,58	0,42	0,0012	0,003503	3,629	3,947	3,047	3,314	3,117	3,390	3,107	3,379	3,083	3,353
17	105	91	2,225	1112,5	85,73	102,19	97,11	92,28	87,69	83,33	79,18	0,41	0,0011	0,003433	3,745	4,006	3,146	3,365	3,220	3,445	3,210	3,434	3,185	3,407
18	112	98	2,282	1141,0	84,83	102,12	96,98	92,09	87,45	83,04	78,86	0,41	0,0011	0,003350	3,944	4,164	3,312	3,497	3,392	3,581	3,382	3,571	3,356	3,543
19	119	105	2,336	1168,0	83,97	102,07	96,87	91,94	87,26	82,81	78,60	0,40	0,0010	0,003277	4,134	4,319	3,471	3,626	3,558	3,717	3,547	3,706	3,521	3,679
20	126	112	2,363	1181.5	83,55	102,02	96,78	91.81	87,10	82,63	78,39	0,40	0,0010	0,003225	4,234	4,386	3,556	3,684	3,645	3,776	3,635	3,766	3,608	3,738
21	133	119	2.393	1196.5	83.07	101.98	96.71	91.71	86,97	82.48	78.22	0.39	0.0009	0.003173	4.345	4,471	3.649	3.755	3.742	3.850	3.732	3.840	3.705	3.812
22	140	126	2,421	1210,5	82,63	101,95	96,66	91,63	86,87	82,36	78,08	0,39	0,0009	0.003129	4,448	4,552	3,736	3,823	3,833	3,923	3,822	3,911	3,796	3,885
23	147	133	2,453	1226,5	82,12	101,93	96,61	91,57	86,79	82,26	77,97	0,39	0,0009	0,003084	4,567	4,653	3,835	3,907	3,937	4,011	3,926	4,000	3,899	3,972
24	154	140	2,472	1236,0	81,82	101,91	96,57	91,51	86,72	82,18	77,88	0,38	0,0008	0,003050	4,639	4,710	3,896	3,955	4,000	4,061	3,990	4,051	3,962	4,022
25	161	147	2,492	1246,0	81,51	101,89	96,54	91,47	86,67	82,12	77,80	0,38	0,0008	0,003019	4,715	4,773	3,960	4,009	4,067	4,117	4,056	4,106	4,029	4,079
26	168	154	2,514	1257.0	81,16	101,88	96,52	91,44	86,62	82,06	77,74	0,38	0,0008	0,002985	4,799	4,847	4,030	4,070	4,141	4,182	4,130	4,171	4,102	4,143
27	175	161	2,536	1268,0	80,81	101,87	96,50	91,41	86,59	82,02	77,69	0,38	0,0008	0,002953	4,883	4,922	4,100	4,133	4,214	4,248	4,204	4,238	4,176	4,210
28	182	168	2,554	1277,0	80,52	101,86	96,48	91,38	86,56	81,99	77,66	0,37	0,0007	0,002926	4,953	4,985	4,159	4,186	4,276	4,304	4,265	4,293	4,237	4,265
29	189	175	2,571	1285,5	80,26	101,85	96,47	91,37	86,53	81,96	77,62	0,37	0,0007	0,002900	5,019	5,045	4,214	4,236	4,334	4,357	4,323	4,346	4,295	4,318
30	196	182	2,589	1294,5	79,97	101,85	96,46	91.35	86,51	81,93	77,60	0.37	0,0007	0,002873	5,089	5,111	4,273	4,291	4,396	4,415	4,385	4,404	4,357	4,376
31	203	189	2,599	1299,5	79,81	101,84	96,45	91,34	86,50	81,92	77,58	0,37	0,0007	0,002857	5,129	5,147	4,306	4,321	4,431	4,446	4,420	4,435	4,392	4,407
32	210	196	2,611	1305.5	79,62	101,84	96,44	91,33	86,49	81,90	77,56	0,37	0,0007	0,002835	5,177	5,192	4,347	4,359	4,474	4,487	4,463	4,476	4,435	4,447
33	217	203	2,626	1313.0	79,38	101,84	96,43	91,32	86,47	81,89	77,54	0,37	0,0007	0,002814	5,236	5,248	4,397	4,407	4,526	4,536	4,515	4,525	4,486	4,496
34	224	210	2,636	1318.0	79.23	101.83	96.43	91.31	86.47	81.88	77.53	0,37	0,0007	0,002801	5,276	5,286	4,429	4,437	4,560	4,568	4,549	4,557	4,521	4,529
35	231	217	2.646	1323.0	79.07	101.83	96.43	91.31	86.46	81.87	77.52	0.36	0,0006	0,002784	5.316	5.324	4,463	4,470	4.596	4.603	4.585	4.592	4,557	4.564
36	238	224	2.654	1327.0	78.94	101.83	96.42	91.30	86.45	81.86	77.52	0.36	0,0006	0,002768	5.349	5.355	4,491	4,496	4.625	4.631	4.615	4,621	4,586	4.592
37	245	231	2,660	1330.0	78,85	101,83	96,42	91,30	86,45	81,86	77,51	0,36	0,0006	0,002758	5,374	5,379	4,512	4,516	4,647	4,652	4,636	4,641	4,608	4,613
38	252	238	2,663	1331.5	78,80	101.83	96,42	91,30	86,45	81,85	77,50	0,36	0,0006	0,002749	5,387	5,391	4,523	4,527	4,659	4,663	4,648	4,652	4,620	4,624

Изменение напряженно-деформированного состояния железобетонных образцов серии № 1

	Т	т. т.	IA,	Напр. в			Напряж	сения в бе	тоне по			ß	Коэфф	оициенты		Xa	арактерис	тика пол	зучести ф	D_t с испол	тьзовани	ем модел	ей	
N⁰	act a, cy	лжи ., су	лацу 0 ⁻³	арматуре			форм	мулам, кг	c/cm ²			ень кени			Лине	йная	Нел	инейная	при аппр	оксимац	ии криво	й уравне	нием (2.1	.15)
п/п	Возр стона	одо. ПЫТ	фopn ε×1	(в одном стержне),	(2, 2, 1, 0)			(2.2.36)	при ф∞ =			Уров груя	β	Ψ	Закон	і Гука	5 член	ов ряда	4 член	а ряда	3 член	а ряда	2 член	а ряда
	Qe	Пţ ис	Де	кгс/см ²	(2.2.10)	1,0	2,0	3,0	4,0	5,0	6,0	38			φ_t	ϕ_{∞}								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1	14	0	0,628	314,0	91,54	91,54	91,54	91,54	91,54	91,54	91,54	0,66	0,0036	0,007651	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2	15	1	0,673	336,5	90,08	91,26	90,97	90,69	90,41	90,13	89,85	0,63	0,0033	0,007263	0,118	3,993	0,099	3,350	0,106	3,587	0,103	3,485	0,099	3,350
3	16	2	0,728	364,0	88,29	90,98	90,42	89,87	89,32	88,77	88,23	0,61	0,0031	0,006893	0,269	4,619	0,226	3,881	0,240	4,121	0,236	4,053	0,227	3,898
4	17	3	0.775	387.5	86.76	90.71	89.89	89.08	88.27	87.47	86.68	0.59	0.0029	0.006571	0.405	4,706	0.339	3.939	0.361	4.194	0.355	4.125	0.342	3.974
5	21	7	0,880	440.0	83,34	89,72	87,94	86,19	84,48	82,80	81,16	0,53	0,0023	0,005683	0,739	3,901	0,612	3,231	0,654	3,453	0,645	3,405	0,627	3,310
6	28	14	1,023	511.5	78,68	88,26	85,10	82,05	79,12	76,28	73,55	0,46	0,0016	0,004692	1,252	3,651	1,029	3,000	1,103	3,216	1.092	3,184	1,070	3,120
7	35	21	1.114	557.0	75.71	87.09	82.86	78.83	75.00	71.36	67.89	0.42	0.0012	0.004102	1.615	3.455	1.325	2.835	1.422	3.042	1.412	3.021	1.387	2.967
8	42	28	1,217	608,5	72,36	86,15	81.08	76,31	71,82	67,60	63,62	0,39	0,0009	0,003638	2,051	3,609	1,673	2,944	1,808	3,181	1,797	3,162	1,770	3.115
9	49	35	1.279	639.5	70.34	85.40	79.67	74.32	69.34	64.69	60.35	0.37	0.0007	0.003329	2.334	3.590	1.899	2.921	2.059	3.167	2.049	3.152	2.021	3.109
10	56	42	1.367	683.5	67.47	84.79	78.54	72.75	67.38	62.42	57.81	0.35	0.0005	0.003033	2,749	3.838	2.220	3.099	2,428	3.389	2.417	3.374	2.387	3.332
11	63	49	1.409	704.5	66.11	84.30	77.63	71.49	65.84	60.63	55.84	0.34	0.0004	0.002850	2.960	3.844	2.384	3.096	2.618	3,400	2,607	3.385	2.577	3.346
12	70	56	1.426	713.0	65.55	83.90	76.91	70.49	64.61	59.22	54.28	0.33	0.0003	0.002734	3.051	3.750	2.456	3.019	2.701	3.320	2.691	3.307	2.661	3.271
13	77	63	1.465	732.5	64.28	83.59	76.32	69.69	63.63	58.10	53.05	0.32	0.0002	0.002595	3.254	3.833	2.609	3.073	2.884	3.397	2.873	3.384	2.843	3.349
14	84	70	1.498	749.0	63.21	83.33	75.85	69.04	62.85	57.21	52.08	0.31	0.0001	0.002483	3.429	3.907	2.739	3.121	3.042	3.466	3.031	3.454	3.000	3.419
15	<u>91</u>	77	1.525	762.5	62.33	83.12	75.47	68.53	62.22	56.50	51.30	0.30	0.0000	0.002388	3.576	3.970	2.847	3.161	3.174	3.524	3.164	3.513	3.133	3.478
16	98	84	1.557	778.5	61.29	82.95	75.16	68.11	61.71	55.92	50.67	0.30	0.0000	0.002293	3.752	4,080	2.973	3.233	3.333	3.625	3.323	3.614	3.292	3.580
17	105	91	1,576	788.0	60.67	82,81	74.91	67.77	61,31	55.46	50.17	0.29	0.0000	0.002301	3.838	4.106	3.057	3.270	3.415	3.653	3.405	3.643	3,373	3,608
18	112	98	1.588	794.0	60.28	82.70	74.71	67.50	60.98	55.09	49.77	0.29	0.0000	0.002283	3.897	4.115	3.112	3.286	3.471	3.665	3.461	3.654	3.430	3.621
19	119	105	1,615	807.5	59.40	82.61	74.55	67.28	60.71	54.79	49.44	0.28	0.0000	0.002269	4.033	4.214	3,226	3,370	3,596	3,757	3,586	3,747	3,555	3.714
20	126	112	1,615	812.5	59.07	82.54	74.42	67, <u>2</u> 0	60,71	54 55	49.18	0.28	0,0000	0.002254	4 084	4 231	3 272	3 390	3 644	3 775	3 635	3 766	3 603	3 733
21	133	119	1,638	819.0	58.65	82.48	74.31	66.95	60.32	54.35	48.97	0.28	0.0000	0.002240	4,151	4.271	3,331	3.428	3,707	3.814	3,697	3,804	3,666	3,772
22	140	126	1,653	826.5	58.16	82.43	74.22	66.84	60.18	54.19	48.80	0.27	0.0000	0.002229	4.228	4.327	3,397	3.476	3,779	3.867	3,769	3.857	3,738	3.825
23	147	133	1,669	834.5	57.64	82.39	74.15	66.74	60.07	54.06	48.66	0.27	0.0000	0.002219	4.311	4.392	3.468	3,533	3.856	3,929	3.847	3,920	3.815	3.887
24	154	140	1.676	838.0	57.41	82.36	74.10	66.66	59.98	53.96	48.55	0.27	0.0000	0.002210	4.348	4.414	3.502	3.555	3.891	3.950	3.881	3.940	3.850	3.909
25	161	147	1.684	842.0	57.15	82.33	74.05	66.60	59.90	53.87	48.46	0.27	0.0000	0.002203	4.390	4.444	3.539	3.583	3.930	3.978	3.921	3.969	3.889	3.937
26	168	154	1.693	846.5	56.86	82.31	74.01	66.55	59.84	53.81	48.38	0.27	0.0000	0.002195	4.437	4,481	3.581	3.617	3.975	4.015	3.965	4.004	3.934	3.973
27	175	161	1.698	849.0	56.69	82.29	73.98	66.51	59,79	53.75	48.32	0.26	0.0000	0.002187	4.464	4.500	3.605	3.634	4.000	4.032	3.991	4.023	3.959	3.991
28	182	168	1.702	851.0	56.56	82.28	73.96	66.47	59.75	53.70	48.27	0.26	0.0000	0.002181	4.485	4.514	3.625	3.649	4.020	4.046	4.011	4.037	3.980	4.006
29	189	175	1.712	856.0	56.24	82.27	73.93	66.45	59.72	53.67	48.23	0.26	0.0000	0.002174	4.538	4.562	3.671	3.690	4.070	4.091	4.061	4.082	4.030	4.051
30	196	182	1.723	861.5	55.88	82.26	73.92	66.42	59.69	53.64	48.20	0.26	0.0000	0.002168	4.598	4.618	3.722	3.738	4.126	4.144	4.116	4.134	4.085	4.102
31	203	189	1.726	863.0	55.78	82.25	73.90	66.40	59.67	53.61	48.17	0.26	0.0000	0.002163	4.614	4.630	3.737	3.750	4.141	4.155	4.132	4.146	4.100	4.114
32	210	196	1.730	865.0	55.65	82.24	73.89	66.39	59.65	53.59	48.15	0.26	0.0000	0.002157	4.635	4.648	3.757	3.768	4.162	4.174	4.152	4.164	4.121	4.133
33	217	203	1.736	868.0	55.46	82.24	73.88	66.38	59.63	53.57	48.13	0.26	0,0000	0.002153	4.668	4.679	3.786	3.795	4.192	4.202	4.183	4.192	4.151	4.160
34	224	210	1.743	871.5	55.23	82.24	73.88	66.37	59.62	53.56	48.12	0.25	0.0000	0.002150	4,706	4,715	3.819	3,826	4.227	4.235	4.218	4.226	4,187	4.195
35	231	217	1.749	874.5	55.03	82.23	73.87	66.36	59.61	53.55	48.10	0.25	0.0000	0.002145	4.739	4,746	3.847	3,853	4.258	4.264	4,249	4.255	4.218	4.224
36	238	224	1,752	876.0	54.93	82.23	73.87	66.35	59.60	53.54	48.09	0.25	0.0000	0.002140	4,755	4,761	3,863	3,868	4,274	4,279	4,265	4,270	4,234	4.239
37	245	231	1.756	878.0	54.80	82.23	73.86	66.35	59.60	53.53	48.09	0.25	0.0000	0.002138	4,777	4,782	3.882	3,886	4.295	4.299	4.285	4.289	4.254	4.258
38	252	238	1,758	879,0	54,74	82,22	73.86	66,34	59,59	53,53	48,08	0,25	0.0000	0,002134	4,788	4,792	3,892	3,895	4,305	4,308	4,296	4,299	4,265	4,268

Изменение напряженно-деформированного состояния железобетонных образцов серии № 2

	/T	П. Т.	ИЯ,	Напр. в			Напряж	ения в бе	тоне по			KI	Коэфф	рициенты		Xa	арактерис	стика пол	зучести ф	р _t с испој	тьзовани	ем модел	ей	
N⁰	ласт а, су	лжи ., су	маці 0 ⁻³	арматуре			форм	иулам, кго	c/cm^2			зень кені			Лине	ейная	Нел	инейная	при аппр	оксимаци	ии криво	й уравнен	нием (2.1	.15)
Π/Π	Возј стон	одо пыт	φopı ε×1	(в одном стержне),	(2, 2, 1, 0)			(2.2.36)	при ф _∞ =			Vpoi rpy»	β	Ψ	Закон	н Гука	5 член	ов ряда	4 член	а ряда	3 член	а ряда	2 член	а ряда
	0	Пţ ис	Де	кгс/см ²	(2.2.10)	1,0	2,0	3,0	4,0	5,0	6,0	3a			φ_t	ϕ_{∞}	φ_t	ϕ_{∞}	φ_t	ϕ_{∞}	φ_t	ϕ_{∞}	φ_t	ϕ_{∞}
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1	14	0	0,887	443,5	120,44	120,44	120,44	120,44	120,44	120,44	120,44	0,87	0,0057	0,009734	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2	15	1	0,972	486,0	117,67	120,07	119,69	119,32	118,95	118,58	118,21	0,83	0,0053	0,009205	0,136	4,602	0,121	4,094	0,130	4,399	0,124	4,196	0,116	3,925
3	16	2	1,032	516,0	115,72	119,70	118,97	118,24	117,52	116,80	116,08	0,80	0,0050	0,008782	0,239	4,104	0,211	3,623	0,226	3,881	0,216	3,709	0,203	3,486
4	17	3	1,074	537,0	114,35	119,35	118,27	117,20	116,14	115,09	114,05	0,77	0,0047	0,008434	0,316	3,671	0,276	3,207	0,297	3,451	0,285	3,311	0,269	3,125
5	21	7	1,158	579,0	111,61	118,05	115,70	113,40	111,15	108,94	106,78	0,71	0,0041	0,007473	0,488	2,576	0,418	2,207	0,449	2,370	0,435	2,297	0,415	2,191
6	28	14	1,287	643,5	107,41	116,13	111,97	107,96	104,09	100,37	96,77	0,63	0,0033	0,006380	0,782	2,280	0,658	1,919	0,706	2,059	0,691	2,015	0,666	1,942
7	35	21	1,393	696,5	103,96	114,59	109,02	103,72	98,68	93,89	89,33	0,58	0,0028	0,005683	1,050	2,246	0,874	1,870	0,939	2,009	0,923	1,975	0,895	1,915
8	42	28	1,522	761,0	99,76	113,35	106,68	100,40	94,50	88,94	83,70	0,54	0,0024	0,005119	1,398	2,460	1,153	2,029	1,243	2,187	1,226	2,157	1,193	2,099
9	49	35	1,618	809,0	96,63	112,36	104,82	97,79	91,23	85,11	79,40	0,51	0,0021	0,004713	1,682	2,587	1,377	2,118	1,491	2,294	1,473	2,266	1,437	2,211
10	56	42	1,701	850,5	93,93	111,56	103,33	95,72	88,66	82,12	76,07	0,48	0,0018	0,004399	1,943	2,712	1,581	2,207	1,718	2,398	1,700	2,373	1,662	2,320
11	63	49	1,755	877,5	92,17	110,91	102,14	94,06	86,63	79,77	73,47	0,47	0,0017	0,004174	2,123	2,757	1,722	2,236	1,875	2,435	1,857	2,411	1,818	2,361
12	70	56	1,774	887,0	91,55	110,39	101,19	92,75	85,01	77,92	71,42	0,46	0,0016	0,004038	2,194	2,697	1,780	2,188	1,938	2,382	1,920	2,360	1,882	2,313
13	77	63	1,830	915,0	89,73	109,97	100,42	91,69	83,72	76,45	69,80	0,45	0,0015	0,003858	2,387	2,812	1,929	2,272	2,107	2,482	2,089	2,461	2,049	2,414
14	84	70	1,861	930,5	88,72	109,63	99,80	90,84	82,69	75,27	68,52	0,44	0,0014	0,003737	2,500	2,849	2,016	2,297	2,206	2,514	2,188	2,493	2,148	2,448
15	91	77	1,890	945,0	87,77	109,36	99,30	90,16	81,86	74,33	67,49	0,43	0,0013	0,003629	2,608	2,895	2,099	2,330	2,300	2,553	2,282	2,533	2,242	2,489
16	98	84	1,930	965,0	86,47	109,14	98,89	89,61	81,20	73,58	66,67	0,42	0,0012	0,003513	2,755	2,996	2,210	2,403	2,429	2,642	2,411	2,622	2,370	2,577
17	105	91	1,961	980,5	85,46	108,95	98,57	89,17	80,66	72,97	66,01	0,41	0,0011	0,003420	2,873	3,073	2,299	2,459	2,533	2,710	2,515	2,690	2,473	2,646
18	112	98	1,974	987,0	85,04	108,81	98,30	88,81	80,23	72,48	65,48	0,41	0,0011	0,003360	2,926	3,089	2,340	2,471	2,580	2,724	2,562	2,705	2,520	2,661
19	119	105	2,004	1002,0	84,06	108,69	98,09	88,52	79,88	72,09	65,05	0,40	0,0010	0,003281	3,042	3,178	2,426	2,535	2,681	2,801	2,663	2,782	2,621	2,738
20	126	112	2,016	1008,0	83,67	108,59	97,91	88,28	79,60	71,77	64,71	0,40	0,0010	0,003230	3,092	3,203	2,463	2,552	2,726	2,824	2,707	2,804	2,665	2,761
21	133	119	2,033	1016,5	83,12	108,52	97,77	88,09	79,37	71,51	64,43	0,39	0,0009	0,003176	3,160	3,252	2,515	2,588	2,786	2,867	2,768	2,848	2,726	2,805
22	140	126	2,052	1026,0	82,50	108,45	97,66	87,94	79,18	71,30	64,20	0,39	0,0009	0,003123	3,237	3,313	2,571	2,631	2,854	2,921	2,836	2,902	2,793	2,858
23	147	133	2,069	1034,5	81,94	108,40	97,56	87,81	79,03	71,13	64,02	0,39	0,0009	0,003075	3,307	3,369	2,622	2,671	2,915	2,970	2,897	2,952	2,854	2,908
24	154	140	2,078	1039,0	81,65	108,36	97,49	87,71	78,91	71,00	63,87	0,38	0,0008	0,003042	3,345	3,396	2,650	2,690	2,949	2,994	2,931	2,976	2,888	2,932
25	161	147	2,090	1045,0	81,26	108,32	97,43	87,63	78,81	70,88	63,75	0,38	0,0008	0,003007	3,395	3,437	2,687	2,720	2,993	3,030	2,975	3,012	2,932	2,968
26	168	154	2,104	1052,0	80,80	108,30	97,38	87,56	78,73	70,79	63,66	0,38	0,0008	0,002969	3,454	3,488	2,729	2,756	3,045	3,075	3,027	3,057	2,983	3,013
27	175	161	2,110	1055,0	80,61	108,27	97,34	87,50	78,66	70,72	63,57	0,38	0,0008	0,002943	3,480	3,508	2,749	2,771	3,068	3,093	3,051	3,076	3,007	3,031
28	182	168	2,119	1059,5	80,31	108,26	97,30	87,46	78,61	70,66	63,51	0,37	0,0007	0,002916	3,519	3,542	2,777	2,795	3,102	3,122	3,085	3,105	3,041	3,061
29	189	175	2,130	1065,0	79,96	108,24	97,28	87,42	78,57	70,61	63,46	0,37	0,0007	0,002886	3,565	3,584	2,811	2,826	3,144	3,161	3,126	3,142	3,082	3,098
30	196	182	2,141	1070,5	79,60	108,23	97,25	87,39	78,53	70,57	63,42	0,37	0,0007	0,002856	3,613	3,628	2,844	2,856	3,186	3,200	3,168	3,182	3,124	3,137
31	203	189	2,149	1074,5	79,34	108,22	97,24	87,37	78,50	70,54	63,38	0,37	0,0007	0,002835	3,647	3,660	2,869	2,879	3,216	3,227	3,198	3,209	3,154	3,165
32	210	196	2,154	1077,0	79,17	108,21	97,22	87,35	78,48	70,51	63,35	0,37	0,0007	0,002814	3,670	3,680	2,886	2,894	3,236	3,245	3,219	3,228	3,175	3,184
33	217	203	2,162	1081,0	78,91	108,20	97,21	87,33	78,46	70,49	63,33	0,36	0,0006	0,002792	3,705	3,713	2,911	2,918	3,267	3,274	3,250	3,257	3,205	3,212
34	224	210	2,168	1084,0	78,72	108,20	97,20	87,32	78,44	70,47	63,31	0,36	0,0006	0,002777	3,731	3,738	2,929	2,934	3,290	3,296	3,273	3,279	3,228	3,234
35	231	217	2,179	1089,5	78,36	108,19	97,19	87,31	78,43	70,46	63,29	0,36	0,0006	0,002751	3,779	3,785	2,962	2,966	3,333	3,338	3,315	3,320	3,270	3,275
36	238	224	2,185	1092,5	78,16	108,19	97,19	87,30	78,42	70,44	63,28	0,36	0,0006	0,002732	3,806	3,811	2,981	2,985	3,357	3,361	3,339	3,343	3,294	3,298
37	245	231	2,186	1093,0	78,13	108,19	97,18	87,29	78,41	70,43	63,27	0,36	0,0006	0,002725	3,811	3,815	2,985	2,988	3,361	3,364	3,343	3,346	3,299	3,302
38	252	238	2,191	1095.5	77,97	108,18	97,17	87,29	78,40	70,42	63,26	0.36	0,0006	0.002711	3.833	3.836	3.001	3,003	3,381	3,384	3,363	3,366	3,319	3,322

Изменение напряженно-деформированного состояния железобетонных образцов серии № 3.

Для удобства сравнения характеристик ползучести ϕ_t и ϕ_{∞} , полученных на основе линейной и нелинейной моделей, п. 2 и п. 28 с табл. 3.8.2 сведены отдельно в табл. 3.8.5.

Таблица 3.8.5

Модель для мгновенных деформаций	Уравне- ние для ф _t	Вели- чина ф _t	Процентное отношение	Вели- чина φ∞	Процентное отношение
1 член ряда (2.1.15), линейная модель	(2.2.31)	0,131	100 %	5,387	100 %
2 члена ряда (2.1.15)	(2.2.29)	0,107	81,7 %	4,620	85,8 %
3 члена ряда (2.1.15)	(2.2.27)	0,110	84,0 %	4,648	86,3 %
4 члена ряда (2.1.15)	(2.2.25)	0,112	85,5 %	4,659	86,5 %
5 членов ряда (2.1.15)	(2.2.21)	0,111	84,7 %	4,523	84,0 %
Среднее значени нелинейным мод	ие по целям	0,110	84,0 %	4,613	85,7 %

Характеристика ползучести

Примечание. За основу расчета процентных отношений (100 %) взята линейная модель.

По результатам расчетов выявлено влияние мгновенной нелинейности бетона на напряжения в бетоне и на характеристику ползучести:

- использование в расчётах коэффициента ползучести из российских норм СП, полученного на основе закона Гука для мгновенных деформаций, приводит к завышению напряжений в бетоне до 29 % от фактических значений;

- характеристика ползучести φ_t, полученная на основе закона Гука для мгновенных деформаций, больше характеристики ползучести, полученной с применением нелинейных моделей для мгновенных деформаций, в среднем на 16 %;

- коэффициент ϕ_{∞} , вычисленный с учетом мгновенной нелинейности бетона уменьшается в среднем на 14,3 % по сравнению с коэффициентом ϕ_{∞} определенного по линейной модели.

Графики изменения характеристики ползучести во времени приведены на рис. 3.8.2.

Выводы

Проведенные автором экспериментальные исследования позволили получить целый комплекс данных о прочностных показателях и деформативности бетона и железобетона. Достоверность полученных опытных данных обеспечивалось за счет:

- изготовления всех образцов из бетонной смеси одного замеса и ее одновременным уплотнением на производственном вибростоле;

- одинаковыми условиями хранения для всех серий образцов;

- применением поверенных приборов и оборудования для измерения требуемых показателей;

- одинаковыми условиями проведения длительных испытаний.

Экспериментально было установлено влияние нелинейной зависимости между мгновенными деформациями и напряжениями (см. рис. 2.1.1) на коэффициент ползучести бетона и на напряжения в бетоне сжатых железобетонных элементов:

коэффициент ползучести, определенный с учетом нелинейной модели для
 мгновенных деформаций меньше коэффициента ползучести, полученного с
 применением линейного закона Гука в среднем на 14 %;

- при учете в расчетах нормативной характеристики ползучести взятой из СП, расчетные напряжения превышают фактические до 29 %. Это приводит к занижению теоретических напряжений в арматуре от действительных значений.

ГЛАВА 4. РАСЧЕТ НОРМАТИВНОЙ УСЛОВНОЙ КРИТИЧЕСКОЙ СИЛЫ ДЛЯ СЖАТЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ

Сжатые железобетонные элементы рассчитываются по прочности поперечного сечения и устойчивости всего элемента как в плоскости действия момента, так и в другой плоскости перпендикулярной к ней. Форма их поперечного сечения с точки зрения целесообразности и экономичности чаще применяется квадратной или прямоугольной, развитой в плоскости действия момента. При значительных по величине изгибающих моментах, действующих в направлении, сечение одном поперечное принимается тавровым ИЛИ двутавровым.

В данной главе рассматривается в соответствии с требованием *Eurocode* 2 влияние мгновенной нелинейности бетона и нелинейной ползучести бетона на величину условной критической силы для сжатых железобетонных элементов прямоугольного поперечного сечения.

4.1. Определение условной критической силы по нормативной методике и по предложениям автора

Установлено, что бетон, являясь упруговязкопластическим материалом, обладает не только существенной физической нелинейностью (мгновенная нелинейность и нелинейная ползучесть), которая проявляется уже при малых уровнях загружения, но и пористой структурой с содержанием большого количества микротрещин по всему объему. Несмотря на этот факт, в основе расчета сжатых железобетонных элементов по недеформированной схеме в соответствии с российскими нормами СП лежит решение известной задачи об устойчивости сжатого абсолютно упругого стержня, шарнирно опертого по концам и имеющего в середине начальный прогиб f_0 , рассматриваемой в курсе Начальное искривление сопротивления материалов. упругого стержня описывается по синусоиде

$$y_0 = f_0 \sin \frac{\pi x}{l},$$
 (4.1.1)

где x – расстояние от начала координат до точки определения прогиба y_0 ($f_0 \ge y_0$); l – длина стержня.

К исследуемому стержню приложена продольная сжимающая сила *P*, линия действия которой совпадает с центральной продольной осью стержня. В результате действия силы *P* стержень получил дополнительный прогиб f(x), величину которого в среднем сечении при $x = \frac{l}{2}$ обозначим f_1 .

Решив дифференциальное уравнения изгиба упругого стержня, найдем величину дополнительного прогиба в среднем сечении:

$$f_1 = \frac{f_0}{\frac{P_{\mathcal{B}}}{P} - 1},$$
(4.1.2)

тогда полный прогиб

$$f_{\text{полн}} = f_0 + f_1 = \frac{f_0}{1 - \frac{P}{P_0}},$$
(4.1.3)

где *P*_Э – критическая сила Эйлера, то есть наименьшая осевая сжимающая сила, способная удержать в равновесии слегка искривленный стержень [15], равная для стержня с шарнирно опертыми концами

$$P_{\mathfrak{Z}} = \frac{\pi^2 EI}{l_0^2},\tag{4.1.4}$$

где l_0 – расчетная длина элемента.

Формула (4.1.3), полученная для расчета прогиба стержня из абсолютно упругого материала, нашла применение в действующих российских нормах СП в виде коэффициента η, учитывающего влияние продольного изгиба (прогиба) элемента на его несущую способность:

$$\eta = \frac{1}{1 - \frac{N}{N_{cr}}},$$
(4.1.5)

где *N_{cr}* – условная критическая сила.

С помощью коэффициента η рекомендуется увеличивать эксцентриситет e_0 путем их перемножения, то есть продольная сила N прикладывается к среднему сечению с эксцентриситетом $e_0 \cdot N$. Следовательно, полный прогиб в среднем сечении

$$e_0 \eta = \frac{e_0}{1 - \frac{N}{N_{cr}}}.$$
 (4.1.6)

Сравнивая правые части формул (4.1.3) и (4.1.6) выявляем их абсолютную идентичность. Таким образом формула (4.1.6), применяемая в СП для расчета внецентренно сжатых элементов, на самом деле соответствует расчетной схеме упругого центрально сжатого стержня, имеющего начальный прогиб f_0 . Это значит, что нормы заменяют начальный прогиб f_0 на эксцентриситет действующей силы e_0 . При работе материала в упругопластической стадии, будут отличаться критические силы P_{\ni} и N_{cr} .

В соответствии с разделом 6.2 СП 52-101-2003 и разделом 8.1 СП 63.13330.2012 условная критическая сила определяется по формуле:

$$N_{cr} = \frac{\pi^2 D}{l_0^2},$$
(4.1.7)

где l_0 – расчетная длина элемента; D – жесткость железобетонного элемента

$$D = k_b E_b I + k_s E_s I_s, \tag{4.1.8}$$

где E_b и E_s – модули упругости бетона и арматуры; I_b и I_s – моменты инерции площадей сечения бетона и всей продольной арматуры относительно оси центра тяжести поперечного сечения элемента; k_b и k_s – коэффициенты, равные

$$k_{b} = \frac{0.15}{\varphi_{l}(0.3 + \delta_{e})}, \qquad k_{s} = 0.7; \qquad (4.1.9)$$

 ϕ_l – коэффициент, учитывающий влияние длительности действия нагрузки

$$\varphi_l = 1 + \frac{M_{l1}}{M_1},\tag{4.1.10}$$

 M_{l1} и M_1 – моменты относительно центра наиболее растянутого и наименее сжатого (при целиком сжатом сечении) стержня арматуры соответственно от

действия полной нагрузки и от действия постоянных и длительных нагрузок; δ_e – относительное значение эксцентриситета продольной силы

$$\delta_e = \frac{e_0}{h},\tag{4.1.11}$$

где e_0 – эксцентриситет приложения продольной силы; h – высота поперечного сечения.

Для железобетонного элемента прямоугольного поперечного сечения с симметричным расположением продольной арматуры относительно оси, проходящей через центр тяжести перпендикулярно сечению, формула условной критической силы имеет вид

$$N_{cr} = \frac{\pi^2 E_b b h^3}{l_0^2} \left[\frac{0,0125}{\left(1 + \frac{M_{I1}}{M_1}\right) (0,3 + \delta_e)} + 0,175 \, \alpha \mu \left(\frac{h_0 - a}{h}\right)^2 \right], \quad (4.1.12)$$

где

$$\mu = \frac{A_{sc,tot}}{bh}; \tag{4.1.13}$$

A_{sc,tot} – площадь поперечного сечения всей продольной арматуры;

$$\alpha = \frac{E_s}{E_b}.\tag{4.1.14}$$

Отметим, что ни мгновенная нелинейность бетона, описываемая формулой (2.1.2), ни нелинейная ползучесть бетона при определении значения N_{cr} не учитывается.

Из структуры формулы (4.1.12) видно, что она представляет собой формулу Ржаницына А. Р. для критической силы центрально сжатого стержня изготовленного из условного и однородного материала Кельвина:

$$P_{\Im} = \frac{\pi^2 E I}{l_0^2 (1 + \varphi_{\infty})},$$
(4.1.15)

которая путем введения множителя (1 + ϕ_{∞}) является развитием известной формулы Эйлера (4.1.4), здесь ϕ_{∞} – предельная характеристика ползучести бетона.

В российских нормах СП [118, 119] продолжительность действия нагрузки учитывается отдельно с помощью снижения модуля упругости

$$E_{b,\tau} = \frac{E_b}{1 + \varphi_{b,cr}},$$
(4.1.16)

где $\varphi_{b,cr}$ – коэффициент ползучести (предельная величина характеристики ползучести), принимаемый в зависимости от класса бетона по прочности и относительной влажности воздуха окружающей среды.

Интерес вызывает сравнение коэффициента φ_l , определяемого по формуле (4.1.10), которым нормируется ползучесть бетона при продолжительном действии сжатой нагрузки, с коэффициентом, входящим в выражение для длительного модуля упругости бетона (4.1.16).

Для выявления влияния ползучести и мгновенной нелинейности бетона на величину условной критической силы N_{cr} и оценки полученных результатов рассмотрены следующие задачи, в которых определена величина N_{cr} по действующим российским нормам СП и по предложенной автором методике. Предложенная автором методика расчета условной критической силы принята к использованию и применена проектным институтом ООО «Северная Столица» при оценке несущей способности монолитных железобетонных колонн при проектировании административного здания в г. Мурманск (акт о внедрении приведен в прил. Т).

Условие 1. Железобетонная колонна длиной 10,0 м сплошного поперечного сечения высотой h = 50 см и шириной b = 40 см имеет шарнирное опирание на двух концах.

Требуется. Определить величину N_{cr} и сравнить полученные результаты.

Исходные материалы:

Бетон тяжелый класса по прочности на сжатие В25 ГОСТ 26633-91:

- призменная прочность $R_b = 148 \text{ кгс/см}^2$;

- модуль упругости $E_b = 306000 \text{ кгс/см}^2$.

Арматурная сталь периодического профиля класса А400 ГОСТ 5781-82:

- расчетное сопротивление сжатию $R_{sc} = 3620 \text{ кгс/см}^2$;

- модуль упругости $E_s = 2 \cdot 10^6 \text{ кгс/см}^2$. Защитный слой бетона a = a' = 4 см.

Решение.

Определим коэффициенты α и δ_e , расчетную длину l_0 и гибкость λ колонны

$$\alpha = \frac{2 \cdot 10^6}{306000} = 6,54;$$
 $\delta_e = 0,7;$ $l_0 = 1,0H = 10,0 \text{ m};$ $\lambda = \frac{l_0}{h} = \frac{1000}{50} = 20.$

Принимаем арматуру 2×2Ø16А400 с площадью сечения стержня 2,010 см² и общей площадью $A_{sc,tot} = 8,04$ см². Коэффициент армирования по формуле (4.1.13): $\mu = 0,004$;

Найдем прочность сечения N_{ult} при гибкости колонны $\lambda = 20$ по формуле:

$$N_{ult} = \varphi \left(R_b A_b + R_{sc} A_{sc,tot} \right), \tag{4.1.17}$$

где $\varphi = 0,7$ [118, п. 6.2.17] или [119, п. 8.1.16].

$$N_{ult} = 226700$$
 кгс.

1. Определение условной критической силы согласно требованиям российских норм СП.

В соответствии с СП принимаем отношение $\frac{M_{l1}}{M_1} = 1$, тогда коэффициент φ_l по формуле (4.1.10): $\varphi_{l1} = 1 + 1 = 2$.

Подставив исходные данные в формулу (4.1.12), вычислим величину условной критической силы:

$$N_{cr1} = 143100$$
 кгс.

2. Определение условной критической силы с учетом касательного модуля в соответствии с рекомендациями Байкова В. Н.

Касательный модуль $E_{\kappa ac}$ связан с законом мгновенного деформирования бетона и зависит от уровня загружения бетона и величины проявившихся деформаций в железобетонном элементе ε_b при заданном уровне загружения:

$$E_{_{\mathrm{Kac}}} = \frac{d\sigma_b}{d\varepsilon_b}.$$

В соответствии с требованием *Eurocode* 2 для описания мгновенной нелинейности бетона используем формулу (2.1.2):

$$\sigma_b = \frac{E_b \varepsilon_b - \frac{R_b}{\varepsilon_{b0}^2} \varepsilon_b^2}{1 + \left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}}\right) \varepsilon_b}.$$
(4.1.18)

Найдем напряжения в бетоне: $\sigma_b = \frac{N_{cr}}{N_{ult}} \cdot R_b = \frac{143100}{226700} \cdot 148 = 93,4 \text{ кгс/см}^2.$

По формуле (4.1.18) определим деформации бетона, соответствующие данному напряжению, используя программу *Mathcad* 15:

$$\varepsilon_{b(E2)} = 49,71 \cdot 10^{-5}.$$

Дифференцируя формулу (4.1.18) по переменной ε_b , получим

$$E_{\text{kac}(E2)} = \frac{\left(E_b - 2\frac{R_b}{\varepsilon_{b0}^2}\varepsilon_b\right)\left[1 + \left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}}\right)\varepsilon_b\right] - \left(E_b\varepsilon_b - \frac{R_b}{\varepsilon_{b0}^2}\varepsilon_b^2\right)\left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}}\right)}{\left[1 + \left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}}\right)\varepsilon_b\right]^2}.$$
 (4.1.19)

Подставив величину найденных деформаций в формулу (4.1.19), определим касательный модуль:

$$E_{\kappa ac(E2)} = 110700 \ \kappa \Gamma c/cm^2.$$

Вычислим коэффициент α_1 по формуле (4.1.14) $\alpha_1 = \frac{2 \cdot 10^6}{110700} = 18,07.$

Подставив исходные данные, касательный модуль *E*_{кас(*E*2)} и коэффициент α₁ в формулу (4.1.12), вычислим величину условной критической силы:

$$N_{cr2} = 82820$$
 кгс.

3. Определение условной критической силы по предложению автора с учетом коэффициента ползучести $\varphi_{b,cr}$, входящего в формулу (4.1.16).

После введения коэффициента ползучести $\phi_{b,cr}$ в формулу (4.1.10) коэффициент

$$\varphi_{l2} = 1 + \varphi_{b,cr}.$$
 (4.1.20)

В соответствии с [118, п. 5.1.14] и [119, п. 6.1.16] для бетона класса В25 и влажности от 40 до 75 % принимаем $\varphi_{b,cr} = 2,5$, тогда $\varphi_{l2} = 1 + 2,5 = 3,5$.

Касательный модуль здесь не учитывается, подставив исходные данные и коэффициент φ_{l2} , вычисленный по формуле (4.1.20), определим условную критическую силу по формуле (4.1.12):

$$N_{cr3} = 102600$$
 кгс.

4. Определение условной критической силы по предложению автора с совместным учетом коэффициента ползучести $\varphi_{b,cr}$ и касательного модуля $E_{\kappaac(E2)}$.

В данном случае условная критическая сила по формуле (4.1.12) равна:

$$N_{cr4} = 68200$$
 кгс.

5. Определение условной критической силы с учетом параметра ползучести *Ψ*, предложенным автором.

В данном случае коэффициент ф₁₃ определяется выражением

$$\varphi_{l3} = 1 + \left[1 + \left(\frac{b}{a} + \beta\right)\sigma_b\right]\varphi_{b,cr}, \qquad (4.1.21)$$

где *а* и *b* – коэффициенты, определяемые по формулам (2.1.17) и (2.1.18); β – коэффициент, принимаемый по табл. 1.2.1.

Для бетона класса В25 коэффициенты

$$a = 3,268 \cdot 10^{-6}, b = 1,269 \cdot 10^{-8};$$

при действующем напряжении по табл. 1.2.1 коэффициент

 $\beta = 0,0033.$

Тогда по формуле (4.1.21) коэффициент

$$\varphi_{l3} = 5,177.$$

Условная критическая сила по формуле (4.1.12) при использовании

- модуля упругости *E*_b

$$N_{cr5} = 85150$$
 кгс;

- касательного модуля $E_{\kappa ac(E2)}$

$$N_{cr6} = 61880$$
 кгс.

Таким образом, рассмотрены 6 вариантов формул по определению условной критической силы *N_{cr}*. Результаты расчетов сведены в табл. 4.1.1.

№ п/п	Вел мс <i>Е_b и кг</i>	пичина одуля ли <i>Е_{кас}, с/см²</i>	Ф коэф	Рормула для определения официента ф _{іі} и его величн	ина	Усл крит сила <i>N</i>	іовная ическая Г _{сг} , кгс/см ²	Отличие от <i>N_{cr1}</i>
1	E_b	306000	(4 1 10)	$1 + \frac{M_{l1}}{2}$	2	N _{cr1}	143100	
2	$E_{\kappa ac}$	110700	(4.1.10)	M_1	Z	N _{cr2}	82820	42 %
3	E_b	306000	(4 1 20)	1	25	N _{cr3}	102600	28 %
4	E _{κac}	110700	(4.1.20)	$1 + \psi_{b,cr}$	3,3	N _{cr4}	68200	52 %
5	E_b	306000	(4 1 21)	$\begin{bmatrix} 1 & b \\ 1 & b \end{bmatrix} = \begin{bmatrix} b \\ c \end{bmatrix} = \begin{bmatrix} c \\ c \end{bmatrix}$	5 177	N _{cr5}	85150	40 %
6	$E_{\kappa ac}$	110700	(4.1.21)	$\begin{bmatrix} 1 + \begin{bmatrix} 1 + \begin{bmatrix} \mathbf{-} + \mathbf{p} \end{bmatrix} \mathbf{O}_b \end{bmatrix} \mathbf{\Psi}_{b,cr}$	3,177	N _{cr6}	61880	57 %

Результаты расчета условной критической силы

Из табл. 4.1.1 видно влияние касательного модуля $E_{\text{кас}}$, связанного с мгновенной нелинейностью бетона, и коэффициента ползучести $\varphi_{b,cr}$ на величину условной критической силы: значения N_{cr} , определенная по нормативной методике и определённая с учетом касательного модуля $E_{\text{кас}}$, отличаются на 42 %; в случае введения в формулу (4.1.10) коэффициента ползучести $\varphi_{b,cr}$ вместо отношения $\frac{M_{ll}}{M_1}$ при использовании модуля упругости E_b отличия составляют 28 % и при использовании касательного модуля $E_{\text{кас}}$ – 52 %; при введении поправочного коэффициента, учитывающего мгновенную нелинейность и нелинейную ползучесть бетона, отличия составляют 40 % и 57 %, соответственно.

Такой сильный разброс величины условной критической силы характерен не только для приведенного выше примера, а абсолютно для любой другой сжатой железобетонной колонны и применении других классов бетона по прочности на сжатие. Об этом свидетельствуют следующие результаты.

Условие 2. Железобетонная колонна длиной 8,0 м квадратного профиля и сплошного поперечного сечения размерами h = b = 40 см имеет шарнирное опирание на двух концах.

Требуется. Определить величину *N*_{cr} и сравнить полученные результаты.

Исходные материалы:

Бетон тяжелый класса по прочности на сжатие В30 ГОСТ 26633-91:

- призменная прочность $R_b = 173 \text{ кгс/см}^2$;

- модуль упругости $E_b = 331000 \text{ кгс/см}^2$.

Арматурная сталь периодического профиля класса А400 ГОСТ 5781-82:

- расчетное сопротивление сжатию $R_{sc} = 3620 \text{ кгс/см}^2$;

- модуль упругости $E_s = 2 \cdot 10^6 \text{ кгс/см}^2$.

Защитный слой бетона a = a' = 4 см.

Решение.

Определим коэффициенты α_2 и δ_e , расчетную длину l_0 и гибкость λ колонны

$$\alpha_2 = 6,04;$$
 $\delta_e = 0,7;$ $l_0 = 8,0$ m; $\lambda = 20.$

Принимаем арматуру 2×2Ø20А400 с общей площадью поперечного сечения $A_{sc,tot} = 12,56 \text{ см}^2$. Коэффициент армирования по формуле (4.1.13): $\mu = 0,0079$;

При гибкости колонны $\lambda = 20$ прочность сечения по формуле (4.1.17):

$$N_{ult} = 224100$$
 кгс.

1. Определение условной критической силы согласно требованиям российских норм СП.

Подставив исходные данные и коэффициент $\phi_{l1} = 2$ в формулу (4.1.12), получим величину условной критической силы:

$$N_{cr1} = 151400$$
 кгс.

2. Определение условной критической силы с учетом касательного модуля в соответствии с рекомендациями Байкова В. Н.

Напряжения в бетоне составляют

$$\sigma_b = \frac{151400}{224100} \cdot 173 = 116,9 \text{ krc/cm}^2.$$

Деформации, соответствующие данному напряжению, определим по формуле (4.1.18):

$$\varepsilon_{b(E2)} = 58,80 \cdot 10^{-5}.$$

Подставив найденную величину деформаций в формулу (4.1.19), определим касательный модуль:

$$E_{\kappaac(E2)} = 112800 \ \kappa \Gamma c/cm^2$$
.

Коэффициент α_1 по формуле (4.1.14) $\alpha_1 = 17,73$.

Подставив исходные данные, касательный модуль *E*_{кас(*E*2)} и коэффициент α₁ в формулу (4.1.12), вычислим величину условной критической силы:

$$N_{cr2} = 97590$$
 кгс.

3. Определение условной критической силы по предложению автора с учетом коэффициента ползучести $\varphi_{b,cr}$, входящего в формулу (4.1.16).

Для бетона класса В30 и влажности от 40 до 75 % принимаем $\varphi_{b,cr} = 2,3,$ тогда $\varphi_{l2} = 3,3.$

Касательный модуль здесь не учитывается, подставив исходные данные и коэффициент ϕ_{12} , определим условную критическую силу по формуле (4.1.12):

$$N_{cr3} = 119200$$
 кгс.

4. Определение условной критической силы по предложению автора с совместным учетом коэффициента ползучести $\varphi_{b,cr}$ и касательного модуля $E_{\kappa ac(E2)}$.

В данном случае условная критическая сила по формуле (4.1.12) равна:

 $N_{cr4} = 86640$ кгс.

5. Определение условной критической силы с учетом параметра ползучести Ψ , предложенным автором.

Коэффициент ϕ_{l3} определяется по формуле (4.1.21), где для бетона класса В30 коэффициенты

$$a = 3,021 \cdot 10^{-6}, \ b = 9,529 \cdot 10^{-9};$$

при действующем напряжении по табл. 1.2.1 коэффициент

$$\beta = 0,0038.$$

Тогда по формуле (4.1.21) коэффициент

$$\varphi_{l3} = 5,170.$$

Условная критическая сила по формуле (4.1.12) при использовании - модуля упругости *E*_b

$$N_{cr5} = 101300$$
 кгс;

- касательного модуля $E_{\text{кас}(E2)}$

$$N_{cr6} = 80540$$
 кгс.

Результаты расчетов сведены в табл. 4.1.2.

Таблица 4.1.2

<u>№</u> п/п	Вел мс <i>Е_b и кг</i>	ичина одуля ли <i>Е_{кас},</i> сс/см ²	Ф коэф	Оормула для определения официента <i>ф_{li} и его велич</i>	ина	Усл крит сила <i>N</i>	повная ическая Г _{сг} , кгс/см ²	Отличие от N _{cr1}
1	E_b	331000	(4 1 10)	$1 + \frac{M_{l1}}{2}$	2	N _{cr1}	151400	
2	$E_{\kappa ac}$	112800	(4.1.10)	M_1	Δ	N _{cr2}	97590	36 %
3	E_b	331000	(4 1 20)	1 + 0	2.2	N _{cr3}	119200	21 %
4	$E_{\kappa ac}$	112800	(4.1.20)	$1 + \psi_{b,cr}$	5,5	N _{cr4}	86640	43 %
5	E_b	331000	(4 1 21)	$1 + \left[1 + \left(\frac{b}{a} + \beta\right)\sigma\right] $	5 170	N _{cr5}	101300	33 %
6	E _{κac}	112800	(4.1.21)	$\begin{bmatrix} 1 + \begin{bmatrix} 1 + \begin{bmatrix} 2 + \mathbf{p} \end{bmatrix} 0_b \end{bmatrix} \mathbf{\psi}_{b,cr}$	3,170	N _{cr6}	80540	47 %

Результаты расчета условной критической силы

Условие 3. Железобетонная колонна длиной 12,0 м сплошного поперечного сечения высотой h = 60 см и шириной b = 50 см имеет шарнирное опирание на двух концах.

Требуется. Определить величину *N*_{cr} и сравнить полученные результаты.

Исходные материалы:

Бетон тяжелый класса по прочности на сжатие В20 ГОСТ 26633-91:

- призменная прочность $R_b = 117 \text{ кгс/см}^2$;

- модуль упругости $E_b = 280000 \text{ кгс/см}^2$.

Арматурная сталь периодического профиля класса А400 ГОСТ 5781-82:

- расчетное сопротивление сжатию $R_{sc} = 3620 \text{ кгс/см}^2$;

- модуль упругости $E_s = 2 \cdot 10^6 \text{ кгс/см}^2$.

Защитный слой бетона a = a' = 4 см.

Решение.

Определим коэффициенты α_2 и δ_e , расчетную длину l_0 и гибкость λ колонны

 $\alpha_2 = 7,14;$ $\delta_e = 0,7;$ $l_0 = 8,0$ m; $\lambda = 20.$

Принимаем арматуру 2×2Ø25A400 с общей площадью поперечного сечения $A_{sc,tot} = 19,64 \text{ см}^2$. Коэффициент армирования по формуле (4.1.13): $\mu = 0,0065$.

При гибкости колонны $\lambda = 20$ прочность сечения по формуле (4.1.17):

 $N_{ult} = 293900$ кгс.

1. Определение условной критической силы согласно требованиям российских норм СП.

Подставив исходные данные и коэффициент $\phi_{l1} = 2$ в формулу (4.1.12), получим величину условной критической силы:

$$N_{cr1} = 248100$$
 кгс.

2. Определение условной критической силы с учетом касательного модуля в соответствии с рекомендациями Байкова В. Н.

Напряжения в бетоне составляют

$$\sigma_b = \frac{248100}{293900} \cdot 117 = 98,8 \text{ krc/cm}^2.$$

Деформации, соответствующие данному напряжению, определим по формуле (4.1.18):

$$\varepsilon_{b(E2)} = 83,85 \cdot 10^{-5}.$$

Подставив величину найденных деформаций в формулу (4.1.19), определим касательный модуль:

$$E_{\text{kac}(E2)} = 43030 \text{ krc/cm}^2$$
.

Коэффициент α_1 по формуле (4.1.14) $\alpha_1 = 46,48$.

Подставив исходные данные, касательный модуль *E*_{кас(*E*2)} и коэффициент α₁ в формулу (4.1.12), вычислим величину условной критической силы:

$$N_{cr2} = 138600$$
 кгс.

3. Определение условной критической силы по предложению автора с учетом коэффициента ползучести $\varphi_{b,cr}$, входящего в формулу (4.1.16).

Для бетона класса В20 и влажности от 40 до 75 % принимаем $\varphi_{b,cr} = 2,8$, тогда $\varphi_{l2} = 3,8$.

Касательный модуль здесь не учитывается, подставив исходные данные и коэффициент ϕ_{12} , определим условную критическую силу по формуле (4.1.12):

$$N_{cr3} = 186800$$
 кгс.

4. Определение условной критической силы по предложению автора с совместным учетом коэффициента ползучести $\varphi_{b,cr}$ и касательного модуля $E_{\kappaac(E2)}$.

В данном случае условная критическая сила по формуле (4.1.12) равна:

 $N_{cr4} = 129200$ кгс.

5. Определение условной критической силы с учетом параметра ползучести Ψ , предложенным автором.

Коэффициент ϕ_{l3} определяется по формуле (4.1.21), где для бетона класса В20 коэффициенты

$$a = 3,571 \cdot 10^{-6}, b = 1,910 \cdot 10^{-8};$$

при действующем напряжении по табл. 1.2.1 коэффициент

 $\beta = 0,005.$

Тогда по формуле (4.1.21) коэффициент

 $\varphi_{l3} = 6,663.$

Условная критическая сила по формуле (4.1.12) при использовании

- модуля упругости Е_b

$$N_{cr5} = 157500$$
 кгс;

- касательного модуля $E_{\kappa ac(E2)}$

$$N_{cr6} = 124700$$
 кгс.

Результаты расчетов сведены в табл. 4.1.3.

Таблица 4.1.3

Результаты расчета условной критической силы задачи № 3

<u>№</u> п/п	Вел мс <i>Е_b</i> и кг	ичина одуля ли Е _{кас} , сс/см ²	Ф коэф	Рормула для определения фициента ф _{іі} и его велич	ина	Усл крит сила <i>N</i>	іовная ическая Г _{сг} , кгс/см ²	Отличие от <i>N_{cr1}</i>
1	E_b	280000	(4.1.10)	$1 + \frac{M_{l1}}{2}$	2	N _{cr1}	248100	
2	$E_{\kappa ac}$	43030	(4.1.10)	M_1	Ζ	N _{cr2}	138600	44 %
3	E_b	280000	(4 1 20)	1 + 0	2.0	N _{cr3}	186800	25 %
4	$E_{\kappa ac}$	43030	(4.1.20)	$1 + \psi_{b,cr}$	3,0	N _{cr4}	129200	48 %
5	E_b	280000	(4 1 21)	$1 + \begin{bmatrix} 1 + \begin{pmatrix} b \\ - + \beta \end{pmatrix} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$	6 6 6 2	N _{cr5}	157500	37 %
6	Eкас	43030	(4.1.21)	$\begin{bmatrix} 1 + \begin{bmatrix} 1 + \begin{bmatrix} \mathbf{-} + \mathbf{p} \end{bmatrix} \mathbf{O}_b \end{bmatrix} \mathbf{\Psi}_{b,cr}$	0,005	N _{cr6}	124700	50 %

Из табл. 4.1.1 – 4.1.3 виден серьёзный разброс результатов вычислений условной критической силы, определение которой обязательно при расчете сжатых железобетонных колонн. Этот разброс указывает на абсолютную условность расчета уловной критической силы, внедрённого в российские нормы проектирования СП, который научно не обоснован и не подтверждён экспериментальными исследованиями. Об этом свидетельствует рис. 4.1.4, приведенный Мехамедиевым Т. А. и Кузевановым Д. В. в статье [96].

Рис. 4.1.4. Распределение отношения экспериментальный данных к теоретическим

Из рисунка 4.1.4 видна большая область несоответствия теоретического расчета экспериментальным данным для всех классов бетона, при этом наибольшие расхождения могут превышать даже 100 %. Поэтому при расчете железобетонных элементов необходимо учитывать не только нелинейную ползучесть бетона, но и мгновенную нелинейность бетона и связанный с ней касательный модуль деформаций.

Здесь уместно указать, что касательный модуль можно вычислить двумя способами: либо зная действующие напряжения, как это сделано в данной работе, либо зная деформации бетона. Рассмотрим использование и других зависимостей

при определении касательного модуля, в частности, функции (2.1.15), правая часть которых представлена первыми двумя, тремя и четырьмя членами ряда. Известно, что все они с достаточной точностью для расчетов аппроксимируют диаграмму зависимости мгновенных деформаций бетона от напряжений [62, 65, 103, 104, 120 – 123, 137].

Для сравнения зададимся деформациями, равными ε = 33·10⁻⁵. Результаты расчетов касательного модуля для бетона класса B25 сведены в табл. 4.1.4.

Таблица 4.1.4

Величины касательного модуля по

№ п/п	Формула, связывающая напряжения и мгновенные деформации	$E_{\text{kac}},$ krc/cm ²	Отличие
1	$\sigma_b = \frac{E_b \varepsilon_b - \frac{R_b}{\varepsilon_{b0}^2} \varepsilon_b^2}{1 + \left(\frac{E_b}{R_b} - \frac{2}{\varepsilon_{b0}}\right) \varepsilon_b}$	151600	
2	$\sigma_b = A_1 \varepsilon_b + A_2 \varepsilon_b^2 + A_3 \varepsilon_b^3 + A_4 \varepsilon_b^4 + A_5 \varepsilon_b^5$	159400	5 %
3	$\sigma_b = A_1 \varepsilon_b + A_2 \varepsilon_b^2 + A_3 \varepsilon_b^3 + A_4 \varepsilon_b^4$	133200	12 %
4	$\sigma_b = A_1 \varepsilon_b + A_2 \varepsilon_b^2 + A_3 \varepsilon_b^3$	192800	21 %
5	$\sigma_b = A_1 \varepsilon_b + A_2 \varepsilon_b^2$	65960	56 %

формуле Eurocode 2 и по формулам степенного ряда

По результатам вычислений видно, что наибольшее отклонение касательного модуля, вычисленного с использованием степенного ряда, достигается при применении первых двух членов ряда и составляет 56 %. При применении пяти членов ряда отклонение находится в пределах 5 %. Однако, не смотря на такую незначительную погрешность при вычислении касательного модуля по рассмотренным уравнениям, для расчетов необходимых параметров рекомендуется использовать формулу из *Eurocode* 2.

Выводы

1. Условная критическая сила, внедрённая в российские нормы по железобетону СП 52-101-2003 и СП63.13330.2012, определение которой обязательно при расчете сжатых железобетонных элементов, является критической силой Эйлера.

2. Несмотря на то, что бетон является упруговязкопластическим материалом, в основе расчета сжатых железобетонных элементов по недеформированной схеме в соответствии с российскими нормами СП лежит решение известной задачи об устойчивости сжатого абсолютно упругого стержня, шарнирно опертого по концам и имеющего в середине начальный прогиб f_0 .

3. Мгновенная нелинейность бетона и нелинейная ползучесть бетона при определении значения условной критической силы по действующим нормам СП не учитывается, это приводит к сильному искажению результатов расчета.

4. Предложен приближенный способ учета мгновенной и длительной нелинейности деформирования бетона в расчетах нормативной условной критической силы.

ОБЩИЕ ВЫВОДЫ

1. Разработана методика учета мгновенной нелинейности бетона, нормируемой *Eurocode* 2, в рамках существующих теориях ползучести: теории упруго-ползучего тела, теории упругой наследственности бетона и теории старения бетона.

2. Разработана методика определения напряженно-деформированного состояния сжатых стержневых железобетонных элементов с учетом мгновенной нелинейности бетона и ползучести бетона при высоких уровнях длительного загружения в рамках уточненных теорий ползучести бетона.

3. Уточненная нелинейная теория ползучести бетона не только достаточно точно описывает экспериментальные данные испытаний сжатых железобетонных элементов, загруженных постоянной силой, но позволяет получить аналитические выражения для напряжений и деформаций бетона, а также характеристики ползучести бетона, предельная величина которой применяется в расчетах железобетонных конструкций.

4. Экспериментально изучено влияние мгновенной нелинейности бетона на характеристику ползучести бетона и величину напряжений в бетоне сжатых стержневых железобетонных элементов, загруженных постоянной силой: коэффициент ползучести, определенный с учетом нелинейной модели для мгновенных деформаций меньше коэффициента ползучести, полученного с применением линейного закона Гука в среднем на 14 %; при учете в расчетах нормативной характеристики ползучести взятой из СП, расчетные напряжения превышают фактические до 29 %. Это приводит к занижению теоретических напряжений в арматуре от действительных значений.

5. Установлено, что не смотря на достаточно точную аппроксимацию нелинейного графика мгновенного деформирования бетона первыми двумя, тремя и четырьмя членами степенного ряда, их применение в расчетах касательного модуля деформаций приводит к погрешностям. Для определения касательного

модуля деформаций необходимо использовать либо пять членов степенного ряда, либо формулу из *Eurocode* 2.

6. Неучет мгновенной нелинейности бетона и, связанного с ней касательного модуля деформаций, а также неучет нелинейной ползучести при определении условной критической силы приводит к сильному искажению результатов расчета по сравнению с условной критической силой, вычисленной по действующим СП РФ.

СПИСОК ЛИТЕРАТУРЫ

 Александровский, С. В. Нелинейная ползучести бетона при ступенчато изменяющихся напряжениях / С. В. Александровский, Н. А. Колесников // Бетон и железобетон. – 1971. – № 6. – С. 24-27.

2. Александровский, С. В. О наследственных функциях теории ползучести стареющего бетона / С. В. Александровский // Ползучесть строительных материалов и конструкций / ЦНИИСК им. В. А. Кучеренко ; под ред. А. Р. Ржаницына. – М., 1964. – С. 135-156.

3. Александровский, С. В. О разновидностях современной теории ползучести бетона и наследственных функциях, фигурирующих в их уравнениях / С. В. Александровский // Ползучесть строительных материалов и конструкций / ЦНИИСК им. В. А. Кучеренко ; под ред. А. Р. Ржаницына. – М., 1964. – С. 115-134.

Александровский, С. В. Расчет бетонных и железобетонных конструкций на изменения температуры и влажности с учетом ползучести / С. В. Александровский. – М. : Стройиздат, 1973. – 432 с.

5. Александрян, Р. А. Кручение тонкостенных стержней замкнутого профиля в условиях неустановившейся ползучести / Р. А. Александрян, Н. Х. Арутюнян, М. М. Манукян // АН СССР. Прикладная математика и механика. – 1958. – Т. ХХІІ, вып. 6. – С. 766-780.

6. Арутюнян, Н. Х. Некоторые вопросы теории ползучести /
Н. Х. Арутюнян. – М. ; Л. : Гос. изд-во техн.-теорет. лит., 1952. – 323 с.

7. Арутюнян, Н. Х. Теория упругого напряженного состояния бетона с учетом ползучести / Н. Х. Арутюнян // Прикладная математика и механика / Ин-т механики АН СССР. – 1949. – Т. XIII. – Вып. 6. – С. 609-622.

Байков, В. Н. Исследование несущей способности железобетонных балок с односторонней сжатой полкой / В. Н. Байков, З. А. Димитров, А. А. Рахманов // Бетон и железобетон. – 1980. – № 9. – С. 39-40.

9. Байков, В. Н. О дальнейшем развитии общей теории железобетона /
В. Н. Байков // Бетон и железобетон. – 1979. – № 7. – С. 27-29.

Байков, В. Н. Построение зависимости между напряжениями и деформациями сжатого бетона по системе нормируемых показателей /
 В. Н. Байков, С. В. Горбатов, З. А. Димитров // Изв. высш. учеб. заведений. Стр-во и архитектура. – 1977. – № 6. – С. 15-18.

11. Байков, В. Н. Расчет изгибаемых элементов с учетом экспериментальных зависимостей между напряжениями и деформациями для бетона и высокопрочной арматуры / В. Н. Байков // Изв. высш. учеб. заведений. Стр-во и архитектура. – 1981. – № 5. – С. 26-32.

12. Бамбура, А. Н. Диаграмма «напряжения-деформации» для бетона при центральном сжатии / А. Н. Бамбура // Вопросы прочности, деформативности и трещиностойкости железобетона ; Межвуз. сб. ст. – Ростов н/Д., 1980. – С. 19-22.

 Барашиков, А. Я. Исследование деформативности железобетонных рам / А. Я. Барашиков, Л. А. Мурашко, Г. М. Реминец. – Киев : Будівельник, 1974. – 86 с.

14. Барашиков, А. Я. Расчет железобетонных конструкций на действие длительных переменных нагрузок / А. Я. Барашиков. – Киев : Будівельник, 1977. – 156 с.

15. Беляев, Н. М. Сопротивление материалов / Н. М. Беляев. – М. : Гос. изд-во технико-теорет. лит., 1954. – 856 с.

16. Бондаренко, В. М. Инженерные методы нелинейной теории железобетона / В. М. Бондаренко, С. В. Бондаренко. – М. : Стройиздат, 1982. – 287 с.

17. Бондаренко, В. М. Некоторые вопросы нелинейной теории железобетона / В. М. Бондаренко. – Харьков : Изд-во Харьк. ун-та, 1968. – 323 с.

18. Буданов, Н. А. Влияние ползучести бетона на работу железобетонных арок : расчет железобетонных бесшарнирных арок на постоянную нагрузку, усадку, эффект Фрейсинэ и температуру : сообщ. № 30 / Н. А. Буданов. – Днепропетровск, 1940. – 160 с.

19. Буданов, Н. А. Расчет железобетонных конструкций с учетом ползучести бетона / Н. А. Буданов. – М. ; Л. : Стройиздат, 1949. – 116 с.

20. Васильев, П. И. К вопросу выбора феноменологической теории ползучести бетона / П. И. Васильев // Ползучесть строительных материалов и конструкций / ЦНИИСК им. В. А. Кучеренко ; под ред. А. Р. Ржаницына. – М., 1964. – С. 106-114.

21. Васильев, П. И. Некоторые вопросы пластических деформаций бетона / П. И. Васильев // Изв. ВНИИГ им. Б. Е. Веденеева. – М. ; Л., 1953. – Т. 49. – С. 83-113.

22. Васильев, П. И. Нелинейные деформации ползучести бетона / П. И. Васильев // Изв. ВНИИГ им. Б. Е. Веденеева. – Л., 1971. – Т. 95. – С. 59-69.

23. Васильев, П. И. Связь между напряжениями и деформациями в бетоне при сжатии с учетом влияния времени / П. И. Васильев // Изв. ВНИИГ им. Б. Е. Веденеева. – Л. ; М., 1951. – Т. 45. – С. 78-92.

24. Вульфсон, С. З. К вопросу линейной теории ползучести / С. З. Вульфсон // Вопросы теории пластичности и прочности строительных конструкций / ЦНИИСК ; под ред. А. Р. Ржаницына. – М., 1961. – Вып. 4. – С. 213-225.

25. Вульфсон, С. З. К теории ползучести бетона / С. З. Вульфсон // Новые методы расчета строительных конструкций / ЦНИИСК ; под ред. А. Р. Ржаницына. – М., 1968. – С. 204-214.

26. Галустов, К. З. К вопросу об упруго-мгновенных деформациях в теории ползучести бетона / К. З. Галустов // Бетон и железобетон. – 2008. – № 5. – С. 11-15.

27. Галустов, К. З. Нелинейная теория ползучести бетона и расчет железобетонных конструкций / К. З. Галустов. – М. : Физматлит, 2006. – 248 с.

28. Гвоздев, А. А. Некоторые особенности деформирования бетона и теория ползучести / А. А. Гвоздев // Ползучесть строительных материалов и конструкций / ЦНИИСК им. В. А. Кучеренко ; под ред. А. Р. Ржаницына. – М., 1964. – С. 172-178.

29. Гвоздев, А. А. О перераспределении усилий в статически неопределимых железобетонных обычных и предварительно напряженных конструкциях : науч. сообщ. / А. А. Гвоздев. – М., 1955. – 29 с.

30. Гвоздев, А. А. Ползучесть бетона и пути ее исследования / А. А. Гвоздев // Исследование прочности, пластичности и ползучести строительных материалов / под ред. А. А. Гвоздева. – М., 1955. – С. 126-137.

31. Гениев, Г. А. Некоторые задачи расчета стержней при общей нелинейной зависимости напряжений от деформаций / Г. А. Гениев // Исследования по вопросам строит. механики и теории пластичности / под ред. А. Р. Ржаницына. – М., 1956. – С. 188-222.

32. Гибшман, М. Е. Ползучесть, усадка и местные напряжения в железобетонных предварительно напряженных конструкциях мостов /
 М. Е. Гибшман, Г. В. Кизирия. – М. : Автотрансиздат, 1959. – 180 с.

33. Гибшман, М. Е. Теория и расчет предварительно напряженных железобетонных мостов с учетом длительных деформаций / М. Е. Гибшман. – М. : Транспорт, 1966. – 336 с.

34. Голышев, А. Б. Несущая способность и деформативность железобетонных конструкций / А. Б. Голышев. – Киев : Вища шк., 1978. – 160 с.

35. Голышев, А. Б. Расчет железобетонных стержневых конструкций с учетом фактора времени : пособие для проектировщиков / А. Б. Голышев, В. П. Полищук, И. В. Руденко. – Киев : Будівельник, 1975. – 112 с.

36. Голышев, А. Б. Расчет железобетонных стержневых систем с учетом фактора времени / А. Б. Голышев, В. П. Полищук, И. В. Руденко. – Киев : Будівельник, 1984. – 128 с.

37. Голышев, А. Б. Расчет предварительно напряженных железобетонных конструкций с учетом длительных процессов / А. Б. Голышев. – М. : Стройиздат, 1964. – 151 с.

38. Голышев, А. Б. Расчет сборно-монолитных конструкций с учетом фактора времени / А. Б. Голышев. – Киев : Будівельник, 1969. – 219 с.

39. ГОСТ 10180–90 (СТ СЭВ 3978–83). Бетоны. Методы определения прочности по контрольным образцам. – М. : ИПК Изд-во стандартов, 1997. – 50 с.

40. ГОСТ 10181–2000. Смеси бетонные. Методы испытаний. – М. : Госстрой России, ГУП ЦПП, 2001. – 29 с.

41. ГОСТ 10354-82. Пленка полиэтиленовая. Технические условия. – М. : Стандартинформ, 2007. – 22 с.

42. ГОСТ 166–89 (СТ СЭВ 704–77–СТ СЭВ 707–77 ; СТ СЭВ 1309–78, ИСО 3599–76). Штангенциркули. Технические условия. – М. : Изд-во стандартов, 1997. – 17 с.

43. ГОСТ 19903–74. Прокат листовой горячекатаный. Сортамент. – М. : ИПК Изд-во стандартов, 2000. – 17 с.

44. ГОСТ 22685–89. Формы для изготовления контрольных образцов бетона. Технические условия. – М. : Стандартинформ, 2006. – 10 с.

45. ГОСТ 23732–79. Вода для бетонов и растворов. Технические условия. – М. : Изд-во стандартов, 1993. – 11 с.

46. ГОСТ 23732–79. Вода для бетонов и строительных растворов. Технические условия. – М. : Стандартинформ, 2012. – 12 с.

47. ГОСТ 24452–80. Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона // Бетоны. Методы испытаний. – М. : Изд-во стандартов, 1981. – С. 1-20.

48. ГОСТ 24544-81*. Бетоны. Методы определения деформаций усадки и ползучести // Бетоны. Методы испытаний. – М. : Изд-во стандартов, 1985. – С. 20-46.

49. ГОСТ 26633–91. Бетоны тяжелые и мелкозернистые. Технические условия. – М. : Стандартинформ, 2008. – 16 с.

50. ГОСТ 2850-95. Картон асбестовый. Технические условия. – Минск : ИПК Изд-во стандартов, 1995. – 11 с.

51. ГОСТ 30515–97. Цементы. Общие технические условия. – М. : Госстрой России, ГУП ЦПП, 1998. – 48 с.
52. ГОСТ 31108–2003. Цементы общестроительные. Технические условия. – СПб. : Изд-во ДЕАН, 2005. – 29 с.

53. ГОСТ 3282-74. Проволока стальная низкоуглеродистая общего назначения. Технические условия. – М. : ИПК Изд-во стандартов, 1997. – 14 с.

54. ГОСТ 3722-81 (СТ СЭВ 1990-79). Подшипники качения. Шарики. Технические условия. – М. : Изд-во стандартов, 1990. – 13 с.

55. ГОСТ 427–75. Линейки измерительные металлические. Технические условия. – М. : Изд-во стандартов, 1994. – 7 с.

56. ГОСТ 6727-80. Проволока из низкоуглеродистой стали холоднотянутая для армирования железобетонных конструкций. Технические условия. – М. : ИПК Изд-во стандартов, 1998. – 6 с.

57. ГОСТ 7473–2010. Смеси бетонные. Технические условия. – М. : Стандартинформ, 2011. – 16 с.

58. ГОСТ 8267–93. Щебень и гравий из плотных горных пород для строительных работ. Технические условия. – Минск : ИПК Изд-во стандартов, 2003. – 10 с.

59. ГОСТ 8509–93. Уголки стальные горячекатаные равнополочные. Сортамент. – М. : ИПК Изд-во стандартов, 1996. – 14 с.

60. ГОСТ 8736–93. Песок для строительных работ. Технические условия. – М. : Стандартинформ, 2006. – 7 с.

61. ГОСТ 9466–75 (СТ СЭВ 6568–89). Электроды покрытые металлические для ручной дуговой сварки сталей и наплавки. Классификация и общие технические условия. – М. : ИПК Изд-во стандартов, 1997. – 38 с.

62. Гуща, Ю. П. Расчет деформаций конструкций на всех стадиях при кратковременном и длительном нагружениях / Ю. П. Гуща, Л. Л. Лемыш // Бетон и железобетон. – 1985. – № 11. – С. 13-16.

63. Дегтерев, В. В. Некоторые особенности деформирования и разрушения центрально сжатых железобетонных колонн / В. В. Дегтерев,
Ю. Н. Крестников // Исследование деформаций, прочности и долговечности

бетона транспортных сооружений / под ред. О. Я. Берга. – М., 1969. – Вып. 10. – С. 148-155.

64. Дыховичный, А. А. Статически неопределимые железобетонные конструкции / А. А. Дыховичный. – Киев : Будівельник, 1978. – 108 с.

65. Евграфов, Г. К. Расчет на прочность железобетонных изгибаемых балок в особых случаях / Г. К. Евграфов // Разработка новых мостовых конструкций и методов их расчета / под общ. ред. Г. К. Евграфова. – М., 1968. – Вып. 252. – С. 3-18.

66. Зулпуев, А. М. Построение аппроксимирующей зависимости «напряжение-деформация» для бетона / А. М. Зулпуев // Бетон и железобетон. – 2006. – № 2. – С. 9-11.

67. Ишлинский, А. Ю. Линейные законы деформирования не вполне упругих тел / А. Ю. Ишлинский // Докл. АН СССР. Теория упругости. – 1940. – Т. XXVI, № 1. – С. 22-26.

68. Ишлинский, А. Ю. Уравнения деформирования не вполне упругих и вязкопластических тел / А. Ю. Ишлинский // Изв. АН СССР. ОТН. – 1945. – № 1-2. – С. 34-45.

69. Карпенко, Н. И. Исходные и трансформированные диаграммы деформирования бетона и арматуры / Н. И. Карпенко, Т. А. Мухамедиев, А. Н. Петров // Напряженно-деформированное состояние бетонных и железобетонных конструкций / НИИЖБ ; под ред. С. М. Крылова, Т. А. Мухамедиева. – М., 1986. – С. 7-25.

70. Карпенко, Н. И. К построению обобщенной зависимости для диаграммы деформирования бетона / Н. И. Карпенко // Строит. конструкции. – Минск, 1983. – С. 164-173.

71. Карпенко, Н. И. Общие модели механики железобетона / Н. И. Карпенко. – М. : Стройиздат, 1996. – 413 с.

72. Карпухин, Н. С. Железобетонные конструкции / Н. С. Карпухин ; под ред. В. И. Мурашева. – М. : Гос. изд-во лит. по стр-ву и архитектуре, 1957. – 442 с.

73. Катин, Н. И. Исследоввания ползучести бетона при высоких напряжениях / Н. И. Катин // Исследование свойств бетона и железобетонных конструкций / НИИЖБ ; под ред. А. А. Гвоздева. – М, 1959. – Вып. 4. – С. 74-153.

74. Качанов, Л. М. Некоторые вопросы теории ползучести. Современные проблемы механики / Л. М. Качанов ; под общ. ред. А. И. Лурье, Л. Г. Лойцянского. – Л. ; М. : Гос. изд-во техн.-теорет. лит., 1949. – 164 с.

75. Кизирия, Г. В. Расчет конструкций с учетом деформации ползучести бетона / Г. В. Кизирия. – Тбилиси : Мецниереба, 1969. – 130 с.

76. Кроль, И. С. Эмпирическое представление диаграммы сжатия бетона (обзор литературных источников) / И. С. Кроль // Исследования в области механических измерений. – М., 1971. – Вып. 8(38). – С. 306-326.

77. Крылов, С. Б. Использование реологических моделей при моделировании ползучести бетона / С. Б. Крылов, Е. Е. Гончаров // Промышленное и гражданское стр-во. – 2013. – № 2. – С. 32-33.

78. Крылов, С. Б. Особенности применения уравнений теории ползучести к расчету стержневых изогнутых и сжато-изогнутых железобетонных конструкций / С. Б. Крылов // Промышленное и гражданское стр-во. – 2004. – № 4. – С. 32-33.

79. Крылов, С. Б. Расчет железобетонных балок на основе теории упругоползучего тела / С. Б. Крылов // Бетон и железобетон. – 2003. – № 5. – С. 23-25.

80. Лившиц, Я. Д. Расчет железобетонных конструкций с учетом влияния усадки и ползучести бетона / Я. Д. Лившиц. – Киев : Вища шк., 1971. – 231 с.

81. Лившиц, Я. Д. Расчет железобетонных конструкций с учетом влияния усадки и ползучести бетона / Я. Д. Лившиц. – Киев : Вища шк., 1976. – 280 с.

82. Лившиц, Я. Д. Расчет железобетонных мостов с учетом длительных процессов / Я. Д. Лившиц, М. М. Онищенко. – Киев : КАДИ, 1979. – 76 с.

83. Лукаш, П. А. Основы нелинейной строительной механики / П. А. Лукаш. – М. : Стройиздат, 1978. – 204 с.

84. Маилян, Д. Р. Влияние армирования и эксцентриситета сжимающего усилия на деформативность бетона и характер диаграммы сжатия / Д. Р. Маилян //

Вопросы прочности, деформативности и трещиностойкости железобетона. – Ростов н/Д., 1979. – С. 70-82.

85. Маилян, Р. Л. Бетон на карбонатных заполнителях / Р. Л. Маилян. – Ростов н/Д : Изд-во Ростов. ун-та, 1967. – 272 с.

86. Малмейстер, А. К. Упругость и неупругость бетона /
 А. К. Малмейстер. – Рига : Изд-во АН Латв. ССР, 1957. – 202 с.

87. Манукян, М. М. Напряженное состояние в сжатых железобетонных
элементах с учетом нелинейной ползучести бетона / М. М. Манукян //
Изв. АН Арм. ССР. – 1954. – Т. VII. – № 1. – С. 59-68.

88. Маслов, Г. Н. Термическое напряженное состояние бетонных массивов при учете ползучести бетона / Г. Н. Маслов // Изв. НИИГидротехники. – Л., 1940. – Т. 28. – С. 175-188.

89. Мельник, Р. А. Опытное обоснование функции напряжений для аналитического выражения нелинейной ползучести бетона / Р. А. Мельник, А. Я. Пацула // Длительные деформативные процессы в бетонных и железобетонных конструкциях / под ред. С. В. Александровского. – М., 1970. – С. 38-44.

90. Мельник, Р. А. Применение функции напряжений типа F(σ₆) = ασ₆ⁿ
для определения величин деформаций нелинейной ползучести бетона /
Р. А. Мельник // Строит. конструкции. – Киев, 1966. – Вып. 1. – С. 178-193.

91. Мельник, Р. А. Экспериментальное исследование нелинейной ползучести бетона / Р. А. Мельник // Сборник научных трудов / Киев. инж.-строит. ин-т. – Киев, 1961. – Вып. 16. – С. 117-133.

92. Мельник, Р. А. Экспериментальные исследование влияния нелинейной ползучести бетона на потери предварительного напряжения /
Р. А. Мельник // Строит. конструкции. – Киев, 1967. – Вып. 5. – С. 141-161.

93. Мельник, Р. А. Экспериментальные обоснование выбора функций напряжений для аналитического выражения линейной и нелинейной ползучести бетона / Р. А. Мельник // Сборник научных трудов / Киев. инж.-строит. ин-т. – Киев, 1962. – Вып. 20. – С. 109-124.

94. Методические рекомендации по расчету напряженного состояния железобетонных конструкций транспортных сооружений с учетом ползучести и усадки бетона / НИИ транспортного стр-ва. – М., 1987. – 62 с.

95. Михайлов, В. В. Растяжимость бетона в условиях свободных и связанных деформаций / В. В. Михайлов // Исследование прочности, пластичности и ползучести строительных материалов / под ред. А. А. Гвоздева. – М., 1955. – С. 117-125.

96. Мухамедиев, Т. А. К вопросу расчета внецентренно сжатых железобетонных элементов по СНиП 52-01 / Т. А. Мухамедиев, Д. В. Кузеванов // Бетон и железобетон. – 2012. – № 2. – С. 21-23.

97. Назаренко, В. Г. Диаграмма деформирования бетонов с учетом ниспадающей ветви / В. Г. Назаренко, А. В. Боровских // Бетон и железобетон. – 1999. – № 2. – С. 18-22.

98. Панарин, Н. Я. Некоторые вопросы расчета армированного и неармированного бетона с учетом ползучести / Н. Я. Панарин. – Л. ; М. : Гос. изд-во лит. по стр-ву и архитектуре, 1957. – 75 с.

99. Пастушихин, В. Н. Вынужденные колебания пластинок из нелинейно упругих материалов / В. Н. Пастушихин // Стр-во и архитектура. – 1966. – № 8. – С. 35-40.

100. Пастушихин, В. Н. Вынужденные осесимметричные колебания трехслойной цилиндрической оболочки из нелинейно упругих материалов с учетом внутреннего неупругого сопротивления / В. Н. Пастушихин // Стр-во и архитектура. – 1967. – № 2. – С. 30-38.

101. Пастушихин, В. Н. Колебания пластинок из нелинейно-упругих материалов / В. Н. Пастушихин // Строит. механика и расчет сооружений. – 1966. – № 3. – С. 40-43.

102. Попкова, О. М. Экспериментальное исследование нелинейной ползучести стареющего бетона при сжатии / М. О. Попкова // Длительные деформативные процессы в бетонных и железобетонных конструкциях / под ред. С. В. Александровского. – М., 1970. – С. 23-37.

103. Попов, Н. Н. Проектирование и расчет железобетонных и каменных конструкций / Н. Н. Попов, А. В. Забегаев. – М. : Высш. шк., 1989. – 400 с.

104. Попов, Н. Н. Расчет конструкций специальных сооружений / Н. Н. Попов, Б. С. Расторгуев. – М. : Стройиздат, 1990. – 208 с.

105. Прокопович, А. А. К определению зависимости «σ – ε» с ниспадающим участком для бетона при сжатии / А. А. Прокопович // Железобетонные конструкции / Куйбышев. гос. ун-т им. А. И. Микояна. – Куйбышев, 1979. – С. 33-39.

106. Прокопович, И. Е. Влияние длительных процессов на напряженное и деформированное состояние сооружений / И. Е. Прокопович. – М. : Госстройиздат, 1963. – 260 с.

107. Прокопович, И. Е. Влияние режима приложения сжимающей нагрузки на прочность бетонных и железобетонных стержней / И. Е. Прокопович, В. М. Кобринец, Иг. Ил. Темнов, Абу Аль Ниадж Мохаммад // Изв. высш. учеб. заведений. Стр-во и архитектура. – 1989. – № 6. – С. 1-5.

108. Прокопович, И. Е. К теории ползучести бетона / И. Е. Прокопович // Науч. докл. высш. шк. Стр-во. Строит. механика. – 1958. – № 4. – С. 53-60.

109. Прокопович, И. Е. Прикладная теория ползучести / И. Е. Прокопович,
В. А. Зедгенидзе. – М. : Стройиздат, 1980. – 240 с.

110. Работнов, Ю. Н. Механика деформируемого твердого тела /
Ю. Н. Работнов. – М. : Наука, 1988. – 712 с.

111. Работнов, Ю. Н. Ползучесть элементов конструкций /
 Ю. Н. Работнов. – М. : Наука, 1966. – 752 с.

112. Ржаницын, А. Р. Теория ползучести / А. Р. Ржаницын. – М. : Стройиздат, 1968. – 418 с.

113. Розовский, М. И. О нелинейных уравнениях ползучести и релаксации материалов при сложном напряженном состоянии / М. И. Розовский // Журн. техн. физики АН СССР. – 1955. – Т. ХХV, вып. 13. – С. 2339-2355.

114. Розовский, М. И. Ползучесть и длительное разрушение материалов / М. И. Розовский // Журн. техн. физики АН СССР. – 1951. – Т. ХХІ, вып. 11. – С. 1311-1318.

115. Санжаровский, Р. С. Евростандарты и нелинейная теория железобетона : монография / А. Д. Беглов, Р. С. Санжаровский. – СПб., 2011. – 309 с.

116. Санжаровский, Р. С. Проблемы теории ползучести / Р. С.
Санжаровский // Строит. механика инженерных конструкций и сооружений. –
2013. – № 3. – С. 28-34.

117. Скрамтаев, Б. Г. Исследование прочности бетона и пластичности бетонной смеси : дис. / Б. Г. Скрамтаев. – М., 1936. – 223 с.

118. СП 52-101-2003. Бетонные и железобетонные конструкции без предварительного напряжения арматуры. – СПб. : ДЕАН, 2005. – 128 с.

119. СП 63.13330.2012. Бетонные и железобетонные конструкции. Основные положения : актуализированная редакция СНиП 52-01-2003. – М. : Минрегион России, 2012. – 155 с.

120. Столяров, Я. В. Введение в теорию железобетона / Я. В. Столяров. – М. ; Л. : Гос. изд-во строит. лит., 1941. – 447 с.

121. Столяров, Я. В. О влиянии времени на работу железобетона / Я. В. Столяров. – Харьков : ДВОУ. Техн. изд-во, 1931. – 59 с.

122. Столяров, Я. В. Пути построения новой теории железобетона : сообщ. № 17 / Я. В. Столяров. – Харьков : ОНТВУ-БУДВИДАВ, 1933. – 28 с.

123. Столяров, Я. В. Теория железобетона на экспериментальной основе /
Я. В. Столяров. – Харьков : ОНТИ-НКТП. Гос. науч.-техн. изд-во Украины,
1934. – 226 с.

124. Строительные конструкции / Н. М. Митропольский, А. М. Овечкин,
Ю. Н. Алешинский, А. Ф. Богданович ; под ред. А. М. Овечкина. – М. :
Гос. трансп. ж.-д. изд-во, 1958. – 576 с.

125. Тазехулахов С. А. Экспериментально-теоретическое исследование несущей способности сжатых бетонных элементов : автореф. дис. ... канд. техн. наук / С. А. Тазехулахов. – Ростов н/Д, 1973. – 25 с.

126. Таль, К. Э. О деформативности бетона при сжатии / К. Э. Таль // Исследование прочности, пластичности и ползучести строительных материалов / под ред. А. А. Гвоздева. – М., 1955. – С. 202-207.

127. Улицкий, И. И. Влияние длительных процессов на напряженнодеформированное состояние железобетонных конструкций / И. И. Улицкий. – Киев, 1962. – 36 с.

128. Улицкий, И. И. Влияние нелинейной ползучести бетона на напряженно деформированное состояние изгибаемых и внецентренно сжатых железобетонных элементов / И. И. Улицкий // Ползучесть строительных материалов и конструкций / ЦНИИСК им. В. А. Кучеренко ; под ред. А. Р. Ржаницына. – М., 1964. – С. 72-83.

129. Улицкий, И. И. Напряженное состояние и деформации бетонных и железобетонных элементов и конструкций с учетом длительных процессов / И. И. Улицкий // Теория расчета и конструирования железобетонных конструкций. – М., 1958. – С. 50-72.

130. Улицкий, И. И. Напряженное состояние изгибаемых железобетонных элементов от длительной нагрузки / И. И. Улицкий // Науч. докл. высш. шк. Стр-во. Строительные конструкции. – 1958. – № 4. – С. 105-112.

131. Улицкий, И. И. Определение величин деформаций ползучести и усадки бетонов / И. И. Улицкий. – Киев : Госстройиздат УССР, 1963. – 132 с.

132. Улицкий, И. И. Ползучесть бетона / И. И. Улицкий. – Киев ; Львов : Гос. изд-во техн. лит. Украины, 1948. – 136 с.

133. Улицкий, И. И. Расчет бетонных и железобетонных арочных и комбинированных конструкций с учетом длительных процессов /
И. И. Улицкий. – Киев ; Львов : Гостехиздат Украины, 1950. – 167 с.

134. Улицкий, И. И. Расчет железобетонных конструкций с учетом длительных процессов / И. И. Улицкий, Чжан Чжун-яо, А. Б. Голышев. – Киев : Гос. изд-во лит. по стр-ву и архитектуре УССР, 1960. – 495 с.

135. Улицкий, И. И. Теория и расчет железобетонных стержневых конструкций с учетом длительных процессов / И. И. Улицкий. – Киев :

Будівельник, 1967. – 347 с.

136. Улицкий, И. И. Учет нелинейной ползучести в железобетоне /
 И. И. Улицкий // Строит. механика и расчет сооружений. – 1961. – № 1. – С. 14-17.

137. Фрайфельд, С. Е. Теория железобетона и его расчет : новый метод исследования напряженного состояния элементов, подверженных изгибу / С. Е. Фрайфельд. – Харьков : ОНТИ-НКТП. Гос. науч.-техн. изд-во Украины, 1934. – 86 с.

138. Харлаб, В. Д. Принципиальные вопросы теории ползучести и прочности, связанные с расчетом бетонных конструкций : дис. ... д-ра техн. наук / В. Д. Харлаб. – СПб., 1996. – 48 с.

139. Шейкин, А. Е. К вопросу прочности, упругости и пластичности
бетона / А. Е. Шейкин // Строит. механика и мосты / под ред.
И. П. Прокофьева. – М., 1946. – Вып. 69. – С. 66-96.

140. Щелкунов, В. Г. Зависимость между деформациями и напряжением при разгрузке бетона / В. Г. Щелкунов // Изв. высш. учеб. заведений. Стр-во и архитектура. – 1973. – № 11. – С. 7-10.

141. Щелкунов, В. Г. Об учете обратимости деформаций ползучести в теории старения / В. Г. Щелкунов // Строит. конструкции. – Киев, 1965. – Вып. II. – С. 118-122.

142. Яценко, Е. А. Анализ линейных теорий ползучести бетона /
Е. А. Яценко // Вопросы транспортных строительных конструкций / под общ. ред.
М. М. Сахновского. – Днепропетровск, 1974. – Вып. 159. – С. 30-52.

143. Яценко, Е. А. Исследование потерь предварительного напряжения от усадки, линейной и нелинейной ползучести бетона с учетом обратимости деформаций ползучести : автореф. дис. ... канд. техн. наук / Е. А. Яценко. – Одесса, 1963. – 26 с.

144. Яценко, Е. А. Определение потерь предварительного напряжения от усадки и ползучести бетона с учетом деформаций упругого последействия бетона / Е. А. Яценко // Ползучесть строительных материалов и конструкций / ЦНИИСК им. В. А. Кучеренко ; под ред. А. Р. Ржаницына. – М., 1964. – С. 84-98.

145. Яценко, Е. А. Потеря длительной устойчивости железобетонных систем / Е. А. Яценко // Строит. конструкции. – Киев, 1967. – Вып. V. – С. 60-64.

146. Яценко, Е. А. Экспериментальные исследования нелинейной ползучести бетона / Е. А. Яценко // Сборник научных трудов / Киев. инж.-строит. ин-т. – Киев, 1962. – Вып. 20. – С. 74-90.

147. Яшин, А. В. О некоторых деформативных особенностях бетона при сжатии / А. В. Яшин // Теория железобетона / НИИЖБ ; под ред. К. В. Михайлова, С. А. Дмитриева. – М., 1972. – С. 131-137.

148. Яшин, А. В. Ползучесть бетона в раннем возрасте / А. В. Яшин // Исследование свойств бетона и железобетонных конструкций / НИИЖБ. – М., 1959. – Вып. 4. – С. 31-37.

149. Boltzmann, Ludwig. Zur Theorie der Elastischen Nachwirkung / Ludwig
Boltzmann // Sitzungsberichte der Kaiserlichenakademie der Wissenschaften. – 1874. –
B. LXX, H. I. – N. 8. – S. 275-300.

150. Cowan, Henry J. Inelastic Deformation of Reinforced Concretein Relation to Ultimate Strength / Henry J. Cowan // Engineering. – 1952. – Vol. 174. – N. 4518. – P. 276-280.

151. Desayi, Prakash. Equation for the Stress-Strain Curve of Concrete / Prakash Desayi, S. Krishnan // Journal of the American Concrete Institute. – 1964. – Vol. 61. – N. 3. – P. 345-353.

152. Dischinger, Fr. Untersuchungen über die Knicksicherheit, die Elastische Verformung und das Kriechen des Betons bei Bogenbrücken / Fr. Dischinger // Der Bauingenieur. – 1937. – H. 33/34. – S. 487-520.

153. Dischinger, Fr. Untersuchungen über die Knicksicherheit, die Elastische Verformung und das Kriechen des Betons bei Bogenbrücken / Fr. Dischinger // Der Bauingenieur. – 1937. – H. 39/40. – S. 595-621.

154. Discussion of the paper by Prakash Desayi and S. Krishnan Equation for the Stress-Strain Curve of Concrete / A. Kabaila, Luis P. Saenz, Leonard G. Tulin, Kurt H. Gerstle, Authors // Journal of the American Concrete Institute. – 1964. – Vol. 61. - N. 9. - P. 1227-1239.

155. Dutron, R. Déformations Lentes du Bétonet du Bétonarmé Sous Laction des Charges Permanentes / R. Dutron // Annales des Travaux Publics de Belgique. – 1936. – N. 6. – P. 851-907.

156. EN 1992–1–1:2004 (E). Eurocode 2 : Design of Concrete Structures – Part 1–1 : General Rules and Rules for Buildings. – London : BSI, 2004. – 225 p.

157. Erzen, Cevdet Z. An Expression for Creep and Its Application to Prestressed Concrete / Cevdet Z. Erzen // Journal of the American Concrete Institute. – 1956.–Vol. 28(53). – N. 2. – P. 205-213.

158. Fluck, P. G. Creep of Plain and Reinforced Concrete / P. G. Fluck,
G. W. Washa // Journal of the American Concrete Institute. – 1958.–Vol. 29(54). –
N. 10. – P. 879-895.

159. Hognestad, E. Concrete Stress Distribution in Ultimate Strength Design / Eivind Hognestad, N. W. Hanson, Douglas McHenry // Journal of the American Concrete Institute. – 1955. – Vol. 27 (52), part 1. - N. 4. - P. 455-479.

160. Lee, L. H. N. Inelastic Behavior of Reinforced Concrete Members / Lawrence H. N. Lee // Transactions of the American Society of Civil Engineers. – 1955. – Vol. 120. – Paper N. 2732. – P. 181-207.

161. Raphael, J. M. The Development of Stresses in Shasta Dam /
J. M. Raphael // Transactions of the American Society of Civil Engineers. – 1953. –
Vol. 118. – Paper N. 2547. – P. 289-309.

162. Ross, A. D. Concrete Creep Data / A. D. Ross // The Structural Engineer. – London, August 1937. – Vol. 15. – N. 8. – P. 313-326.

163. Rutledge, S. E. The Influence of Cement Paste Content on the Creep of Lightweight Aggregate Concrete / S. E. Rutledge, A. M. Neville // Magazine of Concrete Research. – 1966. – Vol. 18. – N. 55. – P. 69-74.

164. Sargin, Muharrem. Stress-Strain Relationships for Concrete and the Analysis of Structural Concrete Sections / Muharrem Sargin. – Waterloo, 1971. – N. 4. - 167 p.

165. Shah, Surendra P. Inelastic Behavior and Fracture of Concrete / Surendra
P. Shah, George Winter // Journal of the American Concrete Institute. – 1966. –

Vol. 63. – N. 9. – P. 925-930.

166. Shank, J. R. The Mechanics of Plastic Flow of Concrete / J. R. Shank // Journal of the American Concrete Institute. – 1935. – Vol. 7. – N. 2. – P. 149-180.

167. Smith, G. M. Ultimate Flexural Analysis Based on Stress-Strain Curves of Cylinders / G. M. Smith, L. E. Young // Journal of the American Concrete Institute. – 1956. – Vol. 28(53), part 1. – N. 6. – P. 597-609.

168. Smith, G. M. Ultimate Theory in Flexure by Exponential Function / G. M. Smith, L. E. Young // Journal of the American Concrete Institute. – 1955. – Vol. 27 (52). – No. 3. – P. 349-359.

169. Smith, R. G. The Determination of the Compressive Stress-Strain Properties of Concrete in Flexure / G. M. Smith // Magazine of Concrete Research. – 1960. – Vol. 12. – No. 36. – P. 165-170.

170. Straub, L. G. Plastic Flow in Concrete Arches / Lorenz G. Straub // Proceedings of the American Society of Civil Engineers. – 1931. – Vol. 95.

171. Sturman, Gerald M. Effects of Flexural Strain Gradients on Microcracking and Stress-Strain Behavior of Concrete / Gerald M. Sturman, Surendra P. Shah, George Winter // Journal of the American Concrete Institute. – 1965. – Vol. 62. – N. 7. – P. 805-822.

172. Thomas, F. G. A Conception of the Creep of Unreinforced Concrete and an Estimation of the Limiting Values / F. G. Thomas // The Structural Engineer. -1933. - Vol. XI. $- N_{2} 2. - P. 69-73.$

173. Volterra, V. Lessons sur les Functions de Lignes Professor`s a la Sorbone en 1912 / V. Volterra. – Paris, 1913.

174. Whitney, C. S. Plain and Reinforced Concrete Arches / C. S. Whitney // Journal of the American Concrete Institute. – 1932. – N. 7.

175. Young, L. E. Simplifying Ultimate Flexural Theory by Maximizing the Moment of the Stress Block / L. E. Young // Journal of the American Concrete Institute. – 1960. – Vol. 32 (57). – No. 5. – P. 549-556.

приложения

ПРИЛОЖЕНИЕ А

(обязательное)

Журнал определения прочности по контрольным образцам

Дат	а изготовле	ния образцов:		22-окт	г-2012										
№ испытания	Іаименование образца	Дата испытания	Возраст бетона, сут	№ образца	Масса образца, г	I ođ	Размерь бразца, (л СМ	Средняя плотность образца, г/см ³	Номер испытательной машины, шкала	Разрушающая нагрузка, кгс	Ілощадь поперечного сечения образца, см ²	Маштабный коэффициент ¹ , α	Прочность приведен- ая к базовому размеру образца ² , кгс/см ²	Средняя прочность серии образцов в дан- ном возрасте ³ , кгс/см ²
	Ţ					а	b	h		I		Ι		Η) I
				1	2370	10,0	10,0	10,0	2,370		14500	100,0		137,8	
1	Куб	29-окт-2012	7	2	2360	10,0	10,0	10,0	2,360		14200	100,0	0,95	134,9	142,8
	100			3	2390	10,0	10,0	10,0	2,390	Ш	11800	100,0	,	112,1	,
				4	2400	10,0	10,0	10,0	2,400	Г.	16400	100,0		155,8	
				5	2390	10,0	10,1	10,1	2,343	кН в пј	14100	101,0		132,0	
2	- // -	5-ноя-2012	14	0	2380	10,0	10,0	10,0	2,380	00, 1,0	1/200	100,0	0,95	103,4	160,9
				/ 8	2390	10,0	10,0	10,0	2,390	-10 ния еде	16800	100,0		159,0	
				9	2280	10,0	10,0	99	2,340	МС ылен рив	21100	100,0		200.5	
				10	2350	10,0	10,0	10.0	2,365	ия I а де е п	19200	100,0		182.4	
3	- // -	12-ноя-2012	21	11	2330	10,0	10,0	10,0	2,330	кат цен ерк	21900	100,0	0,95	208,1	198,2
				12	2340	10,0	10,0	10,0	2,340	а с <u>у</u> Н, 1 пов	19600	100,0		186,2	
				13	2320	10,0	10,0	10,0	2,320	нин 0 к	23200	100,0		220,4	
4	11	10 Hog 2012	28	14	2360	10,0	10,0	10,0	2,360	1all 150 TBC	22400	100,0	0.05	212,8	227 4
4	- // -	19-н0я-2012	20	15	2330	10,0	10,0	10,0	2,330	N сала	25200	100,0	0,95	239,4	227,4
				16	2310	10,0	10,0	10,0	2,310	шк (ете	23400	100,0		222,3	
				17	2320	10,0	10,0	10,0	2,320	ция	23400	100,0		222,3	
5	- // -	1-июл-2013	252	18	2280	10,0	10,0	9,9	2,303	C	27000	100,0	0.95	256,5	232.8
				19	2370	10,0	10,0	10,0	2,370		23100	100,0	-,	219,5	,0
				20	2300	10,0	10,0	10,0	2,300		23000	100,0		218,5	

				21	860	7,1	7,1	7,1	2,403				8400	50,4		141,6	
6	Куб	20 ort 2012	7	22	860	7,1	7,1	7,1	2,403				9000	50,4	0.85	151,8	1/9/
0	70	29-0K1-2012	/	23	840	7,1	7,1	7,1	2,347				8600	50,4	0,85	145,0	140,4
				24	850	7,1	7,1	7,1	2,375			П	8800	50,4		148,4	
				25	850	7,1	7,1	7,1	2,375]		ИЛ.	9800	50,4		165,2	
7	//	5 yog 2012	14	26	840	7,1	7,1	7,1	2,347		ĸН.	з пр	9200	50,4	0.85	155,1	162.4
/	- // -	З-ноя-2012	14	27	810	7,1	7,1	7,1	2,263	00,	1,0	но н	9800	50,4	0,85	165,2	102,4
				28	820	7,1	7,1	7,1	2,291	-10	вин	еде	9300	50,4		156,8	
				29	800	7,0	7,0	7,0	2,332	MC	елеі	рив	13000	49,0		225,5	
0	11	12 mag 2012	21	30	830	7,0	7,0	7,0	2,420	вил	на д	ке п	12800	49,0	0.85	222,0	220.1
0	- // -	12-ноя-2012	21	31	830	7,0	7,0	7,0	2,420	жал	цен	вер	14000	49,0	0,85	242,9	230,1
				32	810	7,0	7,0	7,0	2,362	на с	ĸН,	оп (12800	49,0		222,0	
				33	810	7,0	7,0	7,0	2,362	ши	500	B0 (13400	49,0		232,4	
0	//	10 uog 2012	20	34	810	7,0	7,0	7,0	2,362	M	ла 5	ъст	12200	49,0	0.85	211,6	224.8
9	- // -	19-ноя-2012	20	35	810	7,0	7,0	7,0	2,362		шка	стел	12400	49,0	0,85	215,1	234,0
				36	820	7,0	7,0	7,0	2,391			зиде	14800	49,0		256,7	
				37	810	7,0	7,0	7,0	2,362			C	16000	49,0		277,6	
10	//	1 mon 2012	252	38	790	7,0	7,0	7,0	2,303				12700	49,0	0.85	220,3	270.0
10	- // -	1-июл-2015	232	39	800	7,0	7,0	7,0	2,332				15200	49,0	0,85	263,7	270,0
				40	810	7,0	7,0	7,0	2,362				15500	49,0		268,9	
	Патата			41	9550	10,0	9,9	40,0	2,412				15200	99,0		145,9	
11	призма 100	5-ноя-2012	14	42	9700	10,0	10,0	39,9	2,431	лй	TC,	\mathbf{c}	12800	100,0	0,95	121,6	143,0
	100			43	9510	9,9	10,0	39,9	2,408	IBHE	100	0 ki	14600	99,0		140,1	
				44	9440	10,0	10,0	40,0	2,360	ател	ала	я 20	17200	100,0		163,4	
12	- // -	19-ноя-2012	28	45	9490	10,0	10,0	40,0	2,373	IbIT	IIIK	ени	18400	100,0	0,95	174,8	172,0
				46	9480	10,0	10,0	40,0	2,370	исі	50,	дел	17800	100,0		169,1	
				47	9330	10,0	10,0	40,0	2,333	Decc	y-2	зна ,	19800	100,0		188,1	
13	- // -	1-июл-2013	252	48	9270	10,0	10,0	40,0	2,318	Пţ	ПС	Ц	22200	100,0	0,95	210,9	199,5
				49	9160	10,0	10,0	40,0	2,290				18000	100,0		171,0	

	Π			50	3310	7,0	7,0	28,0	2,413				6400	49,0		111,0	
14	призма 70	5-ноя-2012	14	51	3430	7,0	7,0	28,0	2,500	l			7200	49,0	0,85	124,9	119,7
	70			52	3320	7,0	7,0	28,0	2,420	l			6600	49,0		114,5	
				53	3210	7,0	7,0	28,0	2,340				9200	49,0		159,6	
15	- // -	19-ноя-2012	28	54	3250	7,0	7,0	28,0	2,369				9800	49,0	0,85	170,0	168,3
				55	3200	7,0	7,0	28,0	2,332	Ĩ			9600	49,0		166,5	
				56	3240	7,0	7,0	28,0	2,362				10100	49,0		175,2	
16	- // -	1-июл-2013	252	57	3210	7,0	7,0	28,0	2,340				10500	49,0	0,85	182,1	178,7
				58	3170	7,0	7,0	28,0	2,310			ч	9500	49,0		164,8	
	T			59	10140	9,9	9,9	39,9				ГИС	15600	98,0		159,2	
17	призма	5-ноя-2012	14	60	10130	10,0	9,9	40,0		50,	Krc	B II]	14000	99,0		141,4	160,2
	арм. 100			61	10370	9,9	9,9	39,9		V-2	200	OHS	15800	98,0		161,2	
				62	10110	10,0	10,0	40,0		IC.	ВИ	3C II (21700	100,0		217,0	
18	- // -	19-ноя-2012	28	63	10050	10,0	10,0	40,0		лй]	лен	ниdı	20500	100,0		205,0	211,0
				64	9990	10,0	10,0	40,0		IBHI	аде	T ay	20400	100,0	1	204,0	
				65	9940	10,0	10,0	40,0		ател	цена	Bep	22600	100,0		226,0	
19	- // -	1-июл-2013	252	66	9870	10,0	10,0	40,0		IbIT(IC, I	0 II 0	21800	100,0		218,0	223,0
				67	9910	10,0	10,0	40,0		ИСГ	00	າດ	22000	100,0	1	220,0	
	Призма			68	10150	10,0	10,0	40,0		ecc	Ia 1	PCI	32000	100,0		320,0	
20	арм. 100,	1-июл-2013	252	69	10070	10,0	10,0	40,0		Пp	IKaJ	Iat	28200	100,0		282,0	301,0
	cep. № 1			70	10120	10,0	10,0	40,0			п	иде	30600	100,0		306,0	
	Π			71	3680	7,0	6,9	28,0			Ċ	۲B CB	9000	48,3		186,3	
21	призма	5-ноя-2012	14	72	3600	7,0	7,0	28,0					8800	49,0		179,6	187,7
	арм. 70			73	3590	6,9	6,9	27,9				ſ	9000	47,6	1	189,0	
				74	3610	7,0	7,0	28,0				ſ	12000	49,0		244,9	
22	- // -	19-ноя-2012	28	75	3620	7,0	7,0	28,0				ſ	11500	49,0		234,7	239,8
				76	3610	7,0	7,0	28,0					11000	49,0		224,5	
				77	3550	7,0	7,0	27,9				ſ	13400	49,0		273,5	
23	- // -	1-июл-2013	252	78	3470	7,0	7,0	28,0		I		ſ	13800	49,0		281,6	277,6
				79	3490	7,0	7,0	28,0					11500	49,0		234,7	

	Призма			80	3410	7,0	7,0	28,0			.:		15800	49,0	322,4	
24	арм. 70,	1-июл-2013	252	81	3580	7,0	7,0	28,0		50,	KLC	Р	18400	49,0	 375,5	351,0
	cep. № 2			82	3420	7,0	7,0	28,0		<u>y-2:</u>	200	ИЛ.	16000	49,0	326,5	
	Призма			83	3500	7,0	7,0	28,0			ВИ	цп.	17200	49,0	351,0	
25	арм. 70,	1-июл-2013	252	84	3530	7,0	7,0	28,0		ый]	лен	- CM	18400	49,0	 375,5	357,1
	cep. № 3			85	3510	7,0	7,0	28,0		IBHI	а де	- exe	17800	49,0	363,3	
	Призио			86	9570	10,0	10,0	40,0	2,393	атеј	цена	вер	14700	100,0	147,0	
26	призма 100 Е.	5-ноя-2012	14	87	9600	10,0	10,0	39,9	2,406	IbIT	IC, J	о пс	14500	100,0	 145,0	146,5
	$100, L_b$			88	9530	10,0	10,0	40,0	2,383	ИСІ	00	ет. (14600	100,0	146,0	
	Пририо			89	9460	10,0	10,0	40,0	2,365	ecc	па 1	зиди	22600	100,0	226,0	
27	призма 100 <i>F</i> .	1-июл-2013	252	90	9480	10,0	10,0	40,0	2,370	Пp	uka	C	20800	100,0	 208,0	220,0
	$100, L_b$			91	9500	10,0	10,0	39,9	2,381		П		21400	100,0	214,0	

1 - Масштабный коэффициент принимается по [39, табл. 5].

2 - Базовый образец - куб размерами 150×150×150 мм и призма размерами 150×150×400 мм ([39, п. 2.1.1; 47, п. 1.1]).

3 - Средняя прочность серии образцов принимается из 3-х образцов - по двум наибольшим по прочности, из 4-х образцов - по трем наибольшим по прочности ([39, п. 6.4]).

Примечание - позиции 26 и 27 - показание призменной прочности бетона после испытания на определение модуля упругости.

ПРИЛОЖЕНИЕ Б

(справочное)

Журнал испытаний бетонных призм размерами 70×70×280 мм по определению деформаций усадки на базе 187 мм

Дата и	изготовления об	разцов:		22-окт-	-2012				Начало	испыт	аний:		5-ноя-2	2012				Оконча	ание ис	пытани	ій:	-июл-2	013																
			Ĺ						Об	разец .	№ 56									O	бразец Л	<u>io</u> 57									Об	бразец .	N <u>⁰</u> 58					И	ПО
		КИЛ	1Т. сул	, T	За	водской	і номе	р МИГ	, номер	грани	призмн	I			.do	3	аводск	ой номе	ер МИГ	, номер	грани	тризмы				p.	3	аводско	ой номе	р МИГ,	, номер	грани	призмы	I	,		.do	ери мм	op. 10 ⁻³
п/п	Дата	сня	лжи ий,	act a, cy	Nº 254	4603	<u>№</u> 25′	7634	№ 259	9186	<u>№</u> 25	8147	10	C	ефс -3	<u>№</u> 25	9430	<u>№</u> 24	8956	<u>№</u> 25	9561	<u>№</u> 258	094		G	ефс -3	<u>№</u> 25	9338	<u>№</u> 25	9167	<u>№</u> 25	9508	<u>№</u> 25	6977		C	ефс -3	10 c 001	цеф с ×1
Nº I	испытания	мя (одо. Тан	o3p TOH8	1		2	,	3		Z	-	$\Delta C_{\rm cp}$	C _{cp}	ц. л ×10		l	2	2	3	3	4		$\Delta C_{\rm cp}$	C _{cp}	ц. л ×10	1		2	2	3	}	4		$\Delta C_{\rm cp}$	C _{cp}	ц. т. ×10	яя і < 0,0	IТ. <i>1</i> И Е _у
•		sper o	Про	B 6e1	С	ΔC	С	ΔC	С	ΔC	С	ΔC			iocn) عر	С	ΔC	С	ΔC	С	ΔC	С	ΔC			юси Е _{ус}	С	ΔC	С	ΔC	С	ΔC	С	ΔC	, 1		ЮСИ Е _{ус}	ср , cp	ри
		Ш	ИС				_	_	× 0.00	1 мм	-	-	ļļ		OTH		-	-	-	× 0,00)1 мм	-	-			OTH	-	-	-		× 0,00)1 мм	-	_			OTH	Cpe	Отн се
	5 0010	16.00	0		0	0	0	0	0	0	0	0	0	0,0	0,000	0	0	0	0	0	0	0	0	0	0,0	0,000	0	0	0	0	0	0	0	0	0	0,0	0,000	0,0	0,000
1	5-ноя-2012	20.00	0	14	3	3	6	6	3	3	0	0	3,0	3,0	0,016	2	2	9	9	12	12	6	6	7,3	7,3	0,039	-1	-1	0	0	6	6	4	4	2,3	2,3	0,012	4,2	0,022
2	6-ноя-2012	20.00	1	15	4	1	8	2	4	1	1	1	1,3	4,3	0,023	2	0	12	3	16	4	9	3	2,5	9,8	0,052	-1	0	0	0	8	2	6	2	1,0	3,3	0,017	5,8	0,031
3	7-ноя-2012	20.00	2	16	6	2	12	4	7	3	2	1	2,5	6,8	0,036	7	5	19	7	22	6	14	5	5,8	15,5	0,083	1	2	2	2	14	6	10	4	3,5	6,8	0,036	9,7	0,052
4	8-ноя-2012	20.00	3	17	8	2	17	5	11	4	4	2	3,3	10,0	0,053	12	5	24	5	26	4	18	4	4,5	20,0	0,107	2	1	4	2	19	5	14	4	3,0	9,8	0,052	13,3	0,071
5	12-ноя-2012	20.00	7	21	12	4	24	20	20	9	14	3	5,8	15,8	0,084	22	10	34	10	34	8	28	10	9,5	29,5	0,158	6	4	9	5	30	11	24	10	7,5	17,3	0,092	20,8	0,111
0 7	19-ноя-2012 26-ноя-2012	20.00	14 21	28	24	12 9	44 54	20	30	10 6	14 20	6	12,5	28,0	0,150	30 45	14 0	47	0	40 54	12	40	12 0	12,8	42,3	0,220	12	0	18	9	44 54	14	57 46	0	10,5	27,8	0,148	32,7 40.8	0,175
8	3-лек-2012	20.00	21	42	42	9	66	10	43	7	20	4	7,8 8.0	43.8	0.234	45 55	10	65	9	60	6	58	9	8.5	59.5	0,273	25	6	32	8	65	10	40 55	9	8,0	44.3	0.237	49.2	0.263
9	10-дек-2012	20.00	35	49	52	10	76	10	46	3	29	5	7,0	50,8	0,271	65	10	70	5	66	6	66	8	7,3	66,8	0,357	31	6	39	7	72	7	62	7	6,8	51,0	0,273	56,2	0,300
10	17-дек-2012	20.00	42	56	60	8	84	8	52	6	36	7	7,3	58,0	0,310	72	7	77	7	70	4	72	6	6,0	72,8	0,389	38	7	45	6	82	10	70	8	7,8	58,8	0,314	63,2	0,338
11	24-дек-2012	20.00	49	63	65	5	88	4	54	2	40	4	3,8	61,8	0,330	76	4	80	3	74	4	75	3	3,5	76,3	0,408	43	5	49	4	86	4	74	4	4,3	63,0	0,337	67,0	0,358
12	31-дек-2012	20.00	56	70	68	3	89	1	53	-1	41	1	1,0	62,8	0,336	78	2	81	1	75	1	77	2	1,5	77,8	0,416	44	1	51	2	84	-2	75	1	0,5	63,5	0,340	68,0	0,364
13	7-янв-2013	20.00	63	77	76	8	94	5	54	1	46	5	4,8	67,5	0,361	82	4	84	3	78	3	79	2	3,0	80,8	0,432	50	6	56	5	91	7	80	5	5,8	69,3	0,370	72,5	0,388
14	14-янв-2013	20.00	70	84	80	4	98	4	56	2	48	2	3,0	70,5	0,377	84	2	87	3	80	2	82	3	2,5	83,3	0,445	54	4	59	3	94	3	83	3	3,3	72,5	0,388	75,4	0,403
15	21-янв-2013	20.00	94	91	84	4	102	4	58	2	51	3	3,3	73,8	0,394	87	3	90	3	82	2	84	2	2,5	85,8	0,459	57	3	62	3	97	3	86	3	3,0	75,5	0,404	78,3	0,419
10	28-янв-2013 4 фер 2013	20.00	84 01	98	98	14	105	3 1	60 60	2	54 56	3 2	5,5 1.0	79,5 78.3	0,424	90	<u> </u>	93	<u> </u>	85	2	88	4	3,0	88,8 89,0	0,475	62	4	00 66	4	100	<u> </u>	90	4	3,8	79,5	0,424	82,4	0,441
17	11-фев-2013	20.00	98	103	92	- /	105	-1	60 60	0	57	1	-1,0	78,5	0.420	90 90	0	93	0	86	1	88	0	0,3	89,0	0,470	64	2	66	0	100	1	91 91	0	0,5	80.5	0,420	82,3	0,440
19	18-фев-2013	20.00	105	112	95	3	103	3	62	2	58	1	2.3	80.8	0,432	96	6	93	0	86	0	90	2	2.0	91.3	0,488	66	2	69	3	101	2	94	3	2.5	83.0	0.444	85.0	0,455
20	25-фев-2013	20.00	112	126	96	1	109	1	62	0	59	1	0,8	81,5	0,436	96	0	93	0	88	2	90	0	0,5	91,8	0,491	67	1	70	1	104	1	94	0	0,8	83,8	0,448	85,7	0,458
21	4-мар-2013	20.00	119	133	98	2	110	1	63	1	60	1	1,3	82,8	0,443	96	0	95	2	89	1	91	1	1,0	92,8	0,496	69	2	71	1	105	1	96	2	1,5	85,3	0,456	86,9	0,465
22	11-мар-2013	20.00	126	140	100	2	112	2	64	1	61	1	1,5	84,3	0,451	96	0	99	4	90	1	92	1	1,5	94,3	0,504	70	1	72	1	107	2	98	2	1,5	86,8	0,464	88,4	0,473
23	18-мар-2013	20.00	133	147	101	1	114	2	65	1	62	1	1,3	85,5	0,457	98	2	100	1	90	0	94	2	1,3	95,5	0,511	72	2	74	2	108	1	100	2	1,8	88,5	0,473	89,8	0,480
24	25-мар-2013	20.00	140	154	102	1	114	0	65	0	62	0	0,3	85,8	0,459	98	0	100	0	90	0	94	0	0,0	95,5	0,511	72	0	74	0	108	0	100	0	0,0	88,5	0,473	89,9	0,481
25	1-апр-2013	20.00	147	161	102	0	114	0	64	-1	63	1	0,0	85,8	0,459	98	0	100	0	91	1	94	0	0,3	95,8	0,512	72	0	74	0	108	0	100	0	0,0	88,5	0,473	90,0	0,481
26 27	8-anp-2013	20.00	154	168	102	0	114	0	64 64	0	64	1	0,3	86,0 86,3	0,460	98	0	100	0	92	1	94	0	0,3	96,0 96.0	0,513	/3 73	1	74 75	0	108	0	100	0	0,3	88,8	0,475	90,3	0,483
27	13-апр-2013 22-апр-2013	20.00	101	173	103	-2	114	-2	62	-2	63	-1	-1.8	84.5	0.452	96	-2	99	-1	92	-2	92	-2	-1.8	90,0 94 3	0,513	73	-1	76	1	109	-1	100	0	-0.3	89,5	0,477	90,3 89 3	0,484
29	29-апр-2013	20.00	175	182	101	2	112	1	62	0	63	0	0.8	85.3	0,452	97	1	99	0	91	1	92	0	0.5	94.8	0,507	72	0	76	0	100	1	100	1	0,5	89.5	0,479	89.8	0,477
30	6-май-2013	20.00	182	196	104	1	114	1	63	1	63	0	0.8	86,0	0,460	98	1	100	1	91	0	93	1	0,8	95.5	0,511	73	1	76	0	110	1	101	0	0,5	90,0	0,481	90,5	0,484
31	13-май-2013	20.00	189	203	100	-4	112	-2	62	-1	61	-2	-2,3	83,8	0,448	96	-2	97	-3	89	-2	92	-1	-2,0	93,5	0,500	71	-2	74	-2	109	-1	99	-2	-1,8	88,3	0,472	88,5	0,473
32	20-май-2013	20.00	196	210	97	-3	110	-2	60	-2	60	-1	-2,0	81,8	0,437	95	-1	95	-2	86	-3	89	-3	-2,3	91,3	0,488	68	-3	72	-2	107	-2	96	-3	-2,5	85,8	0,459	86,3	0,461
33	27-май-2013	20.00	203	217	97	0	110	0	60	0	60	0	0,0	81,8	0,437	95	0	95	0	86	0	89	0	0,0	91,3	0,488	68	0	72	0	107	0	97	1	0,3	86,0	0,460	86,3	0,462
34	3-июн-2013	20.00	210	224	96	-1	110	0	60	0	59	-1	-0,5	81,3	0,434	96	1	96	1	86	0	89	0	0,5	91,8	0,491	67	-1	71	-1	108	1	97	0	-0,3	85,8	0,459	86,3	0,461
35	10-июн-2013	20.00	217	231	96	0	110	0	60	0	58	-1	-0,3	81,0	0,433	97	1	96	0	86	0	90	1	0,5	92,3	0,493	67	0	71	0	108	0	98	1	0,3	86,0	0,460	86,4	0,462
36	17-июн-2013	20.00	224	238	96	0	110	0	60	0	58	0	0,0	81,0	0,433	96	-l	96	0	87	1	90	0	0,0	92,3	0,493	67	0	71	0	108	0	98	0	0,0	86,0	0,460	86,4	0,462
3/ 38	<u>24-июн-2013</u> 1 июл 2012	20.00	231	245	95	-1	110	0	60	0	50 50	1	-0,3	80,8	0,432	96 06	0	96 06	0	80 02	-1	89	-1	-0,5	91,8 01.0	0,491	67	0	/U 70	-1	109	1	9/	-1	-0,3	85,8 85 0	0,459	86,1	0,460
50	Применение и	20.00	∠38 20502110	 	93 ' оточо		11U 010 HP	U	$\frac{00}{100}$	U	39 1. 01/01/0		U,3	01,0	0,433	90	U	90	U	00	U	07	U	0,0	91,8	0,491	0/	U	70	U	109	U	97	U	0,0	ðJ,ð	0,439	00,2	0,401

Примечание – в таблице обозначено: C – отсчет по шкале прибора; ΔC – разность смежных показаний.

Продолжение приложения

Журнал испытаний бетонных призм размерами 100×100×400 мм по определению деформаций усадки на базе 267 мм

Дата	изготовления	я образи	(OB:	22-ок	г-2012			Начало	о испь	ытани	й:	5-ноя-	-2012			Оконч	чание	испыт	аний:		1-июл	I-2013																
		ИЯ	Т					Обр	разец М	№ 47									00	бразец Ј	№ 48									Обј	разец М	<u>ə</u> 49					ИИ 1	р.) ⁻³
		ган	ит. , су	r :yT	Заводс	кой ном	ер МИ	Г, номер	грани	призм	Ы			op.	38	аводско	ой номе	ер МИГ	, номе	р грани	призм	ы			op.	3	аводско	й номер l	МИГ , н	омер	грани	призмы	I	ļ		.do	cepi	ефо] ×1(
п/п	Дата	СПЫ	жпо ний	pac ia, c	№ 256489	Nº 2:	54647	Nº 257	7153	№ 25	6143	ΔC	С	деф) ⁻³	Nº 24	8471	№ 24	7819	№ 25	59569	<u>№</u> 24	9716	ΛC	C	деф) ⁻³	№ 23	50609	№ 2590	01 J	<u>∿</u> 248	3060	<u>№</u> 258	685	ΛC	C	деф) ⁻³	по 001	Г. Д(Е _{ус}
Ř	испытания	ИВ	одо ыта	Bog	1		2	3		4	ŀ	∆C cp	C cp	ит. , ×1(]	1	2	2		3	4	1	ΔC cp	C cp	ит. , ×1(1	2		3		4		ΔC cp	Сср	ит. ×1(вен О ×	рии
		em5	Пţ] Őe	$C \qquad \Delta C$	С	ΔC	С	ΔC	С	ΔC			гнос Е _{ус}	С	ΔC	С	ΔC	С	ΔC	С	ΔC			гнос Е _{ус}	С	ΔC	$C \qquad \Delta$	C	С	ΔC	С	ΔC			CHOC	редн С _{ср})тнс
		Bŗ	4					× 0,00	1 мм					O					× 0,00	01 мм					Ю				×	0,00	1 мм					6	CF	С
1	5-ноя-2012	16.00	0	14	0 0	0	0	0	0	0	0	0,0	0,0	0,000	0	0	0	0	0	0	0	0	0,0	0,0	0,000	0	0	0	0	0	0	0	0	0,0	0,0	0,000	0,0	0,000
2	6 yog 2012	20.00	1	15	-16 $-1620 4$	0	0	16	16	-18 10	-18 1	-4,5	-4,5	-0,017	2	2	8	8	5	5	4	4	4,8	4,8	0,018	4	4	4	4	6 8	6	$\frac{2}{4}$	$\frac{2}{2}$	4,0	4,0	0,015	1,4	0,005
3	7-ноя-2012	20.00	2	15	-20 -4	4	4	26	8	-19	-1	2.3	-3,3	-0,020	7	4	10	8	13	6	9	5	5.8	11.8	0,022	4	4	6	2	8 12	4	8	4	3.5	8.5	0.032	5.8	0.022
4	8-ноя-2012	20.00	3	17	-24 0	8	4	33	7	-20	-2	2,3	-0,8	-0,003	10	3	25	7	20	7	13	4	5,3	17,0	0,064	14	6	8	2	14	2	13	5	3,8	12,3	0,032	9,5	0,036
5	12-ноя-2012	20.00	7	21	-22 2	17	9	48	15	-18	2	7,0	6,3	0,023	16	6	38	13	32	12	22	9	10,0	27,0	0,101	23	9	14	6	20	6	23	10	7,8	20,0	0,075	17,8	0,066
6	19-ноя-2012	20.00	14	28	-16 6	32	15	64	16	-12	6	10,8	17,0	0,064	26	10	52	14	51	19	36	14	14,3	41,3	0,154	38	15	22	8	26	6	38	15	11,0	31,0	0,116	29,8	0,111
7	26-ноя-2012	20.00	21	35	-9 7	44	12	75	11	-8	4	8,5	25,5	0,096	34	8	66 70	14	66	15	46	10	11,8	53,0	0,199	47	9	30	8	34	8	50	12	9,3	40,3	0,151	39,6	0,148
8	3-дек-2012 10 лек 2012	20.00	28	42	$\begin{array}{c c} 2 & 11 \\ \hline 5 & 3 \end{array}$	50	12	88	13	2	10 7	85	37,0	0,139	42	8	/8	12	80	14	56 65	10 0	11,0 83	64,0 72.3	0,240	60 60	13	36	6 · · · · · · · · · · · · · · · · · · ·	43 51	9	<u>52</u> 60	17	/,5	47,8	0,179	49,6 58.6	0,186
10	10-дек-2012	20.00	42	49 56	10 5	76	7	106	7	9 16	7	6,5	43,3 52.0	0,170	49 54	5	94	9	102	10	72	9 7	83	80.5	0,271	78	9	43	5	58	7	82	13	8.5	66.5	0,217	58,0 66 3	0,219
11	24-дек-2012	20.00	49	63	12 2	82	6	111	5	20	4	4,3	56,3	0,211	58	4	101	7	108	6	78	6	5,8	86,3	0,323	84	6	52	4	62	4	84	2	4,0	70,5	0,264	71,0	0,266
12	31-дек-2012	20.00	56	70	14 2	85	3	112	1	22	2	2,0	58,3	0,218	60	2	102	1	110	2	79	1	1,5	87,8	0,329	86	2	54	2	63	1	89	5	2,5	73,0	0,273	73,0	0,273
13	7-янв-2013	20.00	63	77	19 5	88	3	118	6	26	4	4,5	62,8	0,235	65	5	110	8	116	6	86	7	6,5	94,3	0,353	92	6	60	6	69	6	95	6	6,0	79,0	0,296	78,7	0,295
14	14-янв-2013	20.00	70	84	21 2	91	3	124	6	30	4	3,8	66,5	0,249	68	3	114	4	122	6	90	4	4,3	98,5	0,369	98	6	64	4	73	4	100	5	4,8	83,8	0,314	82,9	0,311
15	21-янв-2013	20.00	//	91	25 4 30 5	98	5	128	4	34 30	4	4,8	76.3	0,267	/1 76	5	119	5	128	6	94	4	4,5	103,0	0,386	103	5	68 72	4	/8	5	105	5	4,8	88,5	0,331	87,6	0,328
10	4-фев-2013	20.00	91	98 105	30 30	103	1	135	2	41	2	13	77.5	0,280	78	2	124	3	134	4	100	4	2.8	110.8	0,404	109	2	72	2	84	1	111	2	$\frac{3,3}{1.8}$	95,8	0,351	92,7 94.6	0,347
18	11-фев-2013	20.00	98	112	30 0	106	2	136	1	43	2	1,3	78,8	0,295	80	2	128	1	140	2	100	2	1,8	112,5	0,421	113	2	76	2	85	1	115	2	1,8	97,3	0,364	96,2	0,360
19	18-фев-2013	20.00	105	119	34 4	110	4	140	4	52	9	5,3	84,0	0,315	85	5	131	3	143	3	107	5	4,0	116,5	0,436	116	3	78	2	89	4	118	3	3,0	100,3	0,375	100,3	0,375
20	25-фев-2013	20.00	112	126	36 2	111	1	142	2	53	1	1,5	85,5	0,320	86	1	132	1	145	2	108	1	1,3	117,8	0,441	118	2	80	2	91	2	120	2	2,0	102,3	0,383	101,8	0,381
21	4-мар-2013	20.00	119	133	38 2	113	2	144	2	55	2	2,0	87,5	0,328	88	2	135	3	149	4	110	2	2,8	120,5	0,451	120	2	83	3	93	2	122	2	2,3	104,5	0,391	104,2	0,390
22	11-мар-2013	20.00	126	140	40 2	117	4	146	2	58	3	2,8	90,3	0,338	90	2	138	3	151	2	113	3	2,5	123,0	0,461	124	4	85	2	96	3	125	3	3,0	107,5	0,403	106,9	0,400
23	18-мар-2013	20.00	133	147	$\begin{array}{c c} 44 & 4 \\ \hline 44 & 0 \\ \end{array}$	120	1	148	2	60	2	2,8	93,0	0,348	94 94	4	142	4	152	1	110	3 1	3,0	126,0	0,472	127	3 1	88	3 I 1 I	00	4	128	$\frac{3}{2}$	3,3	110,8	0,415	109,9	0,412
24	1-апр-2013	20.00	140	161	45 1	121	0	150	1	62	1	0.8	94.8	0,352	95	1	145	2	157	3	117	1	1,0	127,0	0,470	120	2	91	$\frac{1}{2}$ 1	01	1	130	1	1.5	111,3	0,419	110,5	0,410
26	8-апр-2013	20.00	154	168	46 1	122	1	152	1	64	2	1,3	96,0	0,360	97	2	146	1	158	1	119	1	1,3	130,0	0,487	132	2	92	1 1	.03	2	132	1	1,5	114,8	0,430	113,6	0,425
27	15-апр-2013	20.00	161	175	47 1	124	2	152	0	64	0	0,8	96,8	0,362	97	0	146	0	158	0	120	1	0,3	130,3	0,488	132	0	92	0 1	.04	1	132	0	0,3	115,0	0,431	114,0	0,427
28	22-апр-2013	20.00	168	182	46 -1	122	-2	151	-1	64	0	-1,0	95,8	0,359	96	-1	146	0	160	2	119	-1	0,0	130,3	0,488	132	0	93	1 1	.03	-1	132	0	0,0	115,0	0,431	113,7	0,426
29	29-апр-2013	20.00	175	189	47 1	123	1	152	1	64	0	0,8	96,5	0,361	98	2	147	1	162	2	120	1	1,5	131,8	0,493	133	1	94	1 1	04	1	136	4	1,8	116,8	0,437	115,0	0,431
30	6-май-2013	20.00	182	196	48 1	124		154	2	64	0	1,0	97,5	0,365	100	2	148	1	163		120	0	1,0	132,8	0,497	135	2	95	$\frac{1}{2}$	06	2	140	4	2,3	119,0	0,446	116,4	0,436
31	13-маи-2013 20-май-2013	20.00	189	203	43 -3 43 -2	123	-1	155	-1 _1	60 60	-2	-1,8	95,8 94 3	0,359	98 95	-2	140 144	-2	160	-3 -2	118	-2 -2	-2,3	130,5	0,489	135	-2	93	-2 1	03	-1	136	-2	-1,8	117,3	0,439	114,5	0,429
33	27-май-2013	20.00	203	210	43 0	122	-2	152	-1	61	1	-0.5	93.8	0,351	95	0	145	-2	160	2	117	-2	1.0	129.3	0,484	130	-5	91	$\frac{2}{0}$ 1	04	1	136	$\frac{2}{0}$	0.5	115.5	0,433	112,5	0,423
34	3-июн-2013	20.00	210	224	44 1	120	0	151	0	62	1	0,5	94,3	0,353	96	1	145	0	160	0	118	1	0,5	129,8	0,486	132	1	91	0 1	05	1	136	0	0,5	116,0	0,434	113,3	0,424
35	10-июн-2013	20.00	217	231	44 0	120	0	151	0	62	0	0,0	94,3	0,353	96	0	146	1	161	1	118	0	0,5	130,3	0,488	132	0	91	0 1	05	0	136	0	0,0	116,0	0,434	113,5	0,425
36	17-июн-2013	20.00	224	238	44 0	120	0	151	0	62	0	0,0	94,3	0,353	96	0	146	0	161	0	118	0	0,0	130,3	0,488	132	0	91	0 1	05	0	136	0	0,0	116,0	0,434	113,5	0,425
37	24-июн-2013	20.00	231	245	44 0	119	-1	150	-1	62	0	-0,5	93,8	0,351	95	-1	146	0	161	0	118	0	-0,3	130,0	0,487	131	-1	90	-1 1	05	0	136	0	-0,5	115,5	0,433	113,1	0,424
- 38	1-июл-2013	20.00	238	252	44 0	119	0	150	0	62	0	0,0	93,8	0,351	95	0	146	0	161	0	118	0	0,0	130,0	0,487	131	0	90	0 1	05	0	136	0	0,0	115,5	0,433	113,1	0,424

Примечание – в таблице обозначено: С – отсчет по шкале прибора; ∆С – разность смежных показаний.

Окончание приложения

Относительная деформация, ×10⁻³

Рис. Б. Зависимость относительных деформаций усадки от продолжительности испытаний

ПРИЛОЖЕНИЕ В (справочное)

ДОКУМЕНТ О КАЧЕСТВЕ

ОАО «ЦЕСЛА» Сланцевский цементный завод 188560, г. Сланцы, Ленинградская обл.

....

ПОРТЛАНДЦЕМЕНТ ОБЩЕСТРОИТЕЛЬНЫЙ сман с добавками ЦЕМ II/А-Ш 32.5 Б ГОСТ 31108-2003, ГОСТ 30515-97

ГОСТ 31108-2003, ГОСТ 30515-97 Сертификат соответствия № РОСС RU. СМ19.Н00132 № 0539910

	<i>2</i> 4 ²					
Партия № 179	Отгружен «	08	»	10	2012 г.	
Силос			-			
№ 6 автотранспорт						
Класс прочности	x			/не менее 32.	,5 МПа/	
цемента	ЦЕМ II/A-I	Ш 32.5	Б	/не более 52,	5 MПа/	
	2				,	
Добавки: гран.шлак, %:	Менее 20,0%)		/ не более 20	,0%/	
Средняя активность в возр	расте 2 суток	19,0]	МПа	
(по данным за предыдущи	ий месяц)					_
N	~ ~ ~ /	1505				
у дельная поверхность Бле	еин,см2/г:	4587				
Hony on the word strong on the work		25 60			0/	
пормальная Густота цемен	ниного теста	23,60			<u> </u>	
A add EV/WE Marca	270	`				
$A = \psi \psi$, $D K/KI$, Mehee	3/()				

Гарантийный срок не более 60 суток на момент получения

166 ПРИЛОЖЕНИЕ Г (справочное)

Наименование, адрес покупателя: ООО «Бау-Платц»

M³

ПАСПОРТ

на готовую продукцию № 12554-4/11

Дата отгрузки: 09-20 декабря 2011 г.

Наряд-заказ № 6807, 7054, 7260, 7529.

1. Наименование продукции: "Песок для строительных работ"

2. Наименование цеха: Цех№З "Пугарево" Объем: 860

3. Нормативные документы: ГОСТ 8736-93; ГОСТ 25100-95

ГОСТ 8730 Песок для бетона, железобетон смесей	5-93 на, раствор	ов и су	XHX	ГОСТ 2510 Классификация грунтов дл строительс	00-95 я проектирования и тва
Наименование показателя	Зна	ченне		Наименование показателя	Значение
Модуль крупности	2,16 -	2,33		Класс дисперсного грунта	крупный
		3E	PHO	ВОЙ СОСТАВ	A
Полный остаток на сите 5 мм	3,10 -	4,15	%	Полный остаток на сите 2 мм	9,33 - 10,83 %
Полный остаток на сите 0,63 мм	40,15 -	43,48	%	Полный остаток на сите 0,5 мм	53,65 - 60,26 %
Проход через сито 0,16 мм	8,00 -	6,52	%	Полный остаток на сите 0,25 мм	79,47 - 86,23 %
Прахад чорог сито 0,05 мм	3,00	2,70	96	Полный сотатон на онто 0,1 мм	26,49 - 96,83 %
Содержание глины в комках	0,00 -	0,00	%	Число пластичности	R/II
Группа песка	сре	аний		Коэффициент фильтрации м/сут	>3,0
				Разновидность по степени водопроннцаемости	сильноводопроницаемый

7. Органические примеси: окраска раствора светлее эталона

Основание для п.п 1 - 7 протокол испытаний лаборатории ОАО "РУДАС" от 09-20.12.11 Аттестат аккредитации № SP01.01.106.045

8. Раднационное качество строительного материала: Класс I (Аэфф. <370 Бк/кг) Основание - протокол испытаний ЗАО "ПКТИ-Строй ТЕСТ" № 35п-11-ПКТИ от 10.08.11 г.

9. Содержание вредных компонентов и примесей соответствует требованиям ГОСТ 8736-93, приложение "А"

Основание - протокол испытаний ЗАО "РАЦ МЕХАНОБР ИНЖИНИРИНГ АНАЛИТ" № 827-11 от 17.08.2011 г.

Дата составления паспорта: Старший инженер по качеству:

22 декабря 2011 г.

Иванова М.Н.

ПРИЛОЖЕНИЕ Д (справочное)

Закрытое акционерное общество «КАМЕННОГОРСКОЕ КАРЬЕРОУПРАВЛЕНИЕ» г. Каменногорск Ленниградской области

ПАСПОРТ

на щебень граннтный фракция 5-10 мм Щебень фракции: 5-10 мм, ГОСТ 8267-93

Количество щебня: -

Партия № -

1. Зерновой состав:

Размер контрольных сет, мм	d Bann. 5	fl,5(N+d) 7,5	D нанб. 10	1,25 D 12,5
Полный остаток на свтах по массе, % во ГОСТ	от 90 да 100	от 30 до 80	до 10	до 0,5
Полный остаток на сигах но массе, % фактически	90,4	49,1	7,2	0

2. Содержание зерен пластинчатой (лещадной) в игловатой формы, % по массе: 13,2

3. Содержание пылевидных и глинистых частип, %: 0,32

4. Содержание зерен слабых пород, %: 0

5. Содержание глины в комках, %: 0

6. Марка щебня по прочности (дробныости): 1200

7. Марка по нстираемости : И 1

8. Морозостойкость: F 300

9. Насылная плотность, т/м²: 1,35

10. Удельная эффективная активность естественных радионукладов, Бкис: 253

11. Устойчивость структуры щебия против распадов: 0,8

12. Содержание вредных компонентов и примесей: нет

13. Обозначение настоящего стандарта: ГОСТ 8267-93

Заключение: щебень гранитный фр. 5-10 мм соответствует требованиям ГОСТ 8267-93 «Щебень и гравий из плотных горных пород для строительных работ. Технические условия».

Начальник лаборатории JCHUNT PLUCKCH

168 ПРИЛОЖЕНИЕ Е (справочное)

ЗАО «МЕТРОБЕТОН»

194214 г.С-Петербург ул.Ново-Никитинская, 17

Отдел качества 301-42-31

Аттестат аккредитации ИЛ на техническую компетентность №SP 01.01.076.049

	Документ о качестве No 2411/2
	на товарную арматуру
	Выдан <u>"dif "istibalful</u> 200 2 г.
	Заказчик ООО, Гиенкоарин +" СЛЕГасу.
	Дата изготовления изнеаре 2012
	Наименование изделий миссирти систрина
	Марка изделий, количество 15 врг - Истин = 2 вошет
	+ Socear = 54 Orect
	Номер партии А. 401.12
	Обозначение стандарта (ТУ) ГОСТ 10922-90
	Номер серии и выпуска рабочих чертежей
	TCKUJ Zakagillko_
/	Начальник Отдела качества (инженер)
	ОТДЕЛ КАЧЕСТВА
	Система менеджмента качества ЗАО «Метробетон» соответствует международному стандарту ISO 9001:2008 Сертификат № 52487-2009-АQ-МСW-FINAS

Продолжение приложения

TBA Maye MCC		28					•			• •								÷.		•	•										105 N'520	ann	200 1 202
Смстема менеджиента качес ОАО "Белорецкий металлур комбинат сертифицирован мехдународном с тандарти		Лист № 1 Количество листо	бетонных конструкций			·				er mentioner opprenden in the second second						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								and the second s			The second se			11 1000
форма Ne 6	Nº 419923∏ 11/11/2011		тая для армирования железо	NoN	4-620	4-547	4-1344	4-1247	4-1313	4-1265	4-1218	4-1284	4-1077	4-1216	4-680	4-1085	4-1360	4-1304	4-1179	11-778389	11-777985	11-779502	11-779544	11-778692	11-778694	11-779543		2-002	A 121-1	4.1430	OTHEN VALLETOL	WINN ANECIBA	
стройкомплект	Приказ	фиката 11/11/2011	гой стали холоднотяну	Марка			and the second sec																	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	and the second sec				· · · · · · · · · · · · · · · · · · ·		ндартам и техническ	
PL NETPOO		писки серти	оуглеродис	Масса, кг	980	1016	3998	2986	3012	922	1014	996	1012	1910	1042	968	2938	1932	866	2266	2370	2212	2250	2252	7300	22/00	6762	978	066	2034	· · · · · · · · · · · · · · · · · · ·	России ста	
923N -NETEPEY		Дата вы	ка из низко	K-BO MOTKOB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	. 0	·	YOULIN B F	
A Ne 419		44796 2011	Проволон	K-BO FDY3. MeCT	-		4	3	3	1	1	1	1	2	1	1	3	2	1	2	2	2	N	7	4	2	<u> </u>		1	2		т действу	
ЕРТИФИКАТ КАЧЕСТЕ рузополучатель Россия	akas Nº 124554Ш	агон (контейнер) № 531 эта изготовления 11/11	аименование продукции	Размер, мм	9	5	5	2	ç	5	6	G	22	2	2	2			2			6	C		2	5	5	5	5	2	Примечание:	укция ссответствуе	
открытое ЕРНОЕ Общество Епорецкий ический комбинат Г	3		CI 6/2/-80 H	Класс, группа	Bp-1	Bp-1	Bp-1	Bp-1	-1-da	I-da	op-1	1-da	1-da	1-da	8p-1	1-da	80-1	1-do	1-00	1-da	00-1	op-1	Bnd	80-1	Bn-1	Bp-1	8p-1	Bp-1	Bp-1	Bp-1	-	в сертификате прод	
с Акционе "Бе Металлурги			2	NeWe N-n	3	• •							·		4					•			· · · · · · · · · · · · · · · · · · ·		· · · · ·		5	9				Указанная	сповиям.

Окончание приложения

171 ПРИЛОЖЕНИЕ Ж (справочное)

СС Корешок гарантийного талона	Весы электронные общего назначения ТВ-S- 32.2-A2	Заводской номер: С 00890 Дата выпуска: 18.01.2012	Представитель ОТК предприятия-изготовителя МАССА-К ЛК-9 Аллее плеливиятия-изготовителя:	Россия, 194044, Санкт-Петербург, Пироговская наб., 15, лит.А. Тел/ факс: (812) 319-70-87, 319-70-88	радавеи Дата продажи	M.H.	стати название и адрес предприятия, осуществившего гарантийный ремонт		Фамилия подпись М.П.		арантииный талон	Весы электронные общего назначения ТВ-S- 32.2-А2	2 Заводской номер: С 00890 Да са выпуска: 18.01.2012	С Представитель ОТК прелириятия-изготовителя МАССА-К ЛК-9	Адрес предприятия-ная отовнисала. « Россия, Р94044, Санкт-Петербург, Пироговская наб., 15. лит. А. О Тел/ факс: (812) 319-70-87, 319-70-88	ж в Продавец Дата продажи	ABBNTC.	от Название и адрес предприятия, осуществившего гарантийный ремонг	Фамилия подпись ЗАО "МАССА_МК! "	Пироговская наб. 15а
	TB-S- 32.2-A2	Дата выпуска: 18.01.2012	рдными для эксплуатации.	MACCA-K JIK-9			1 B-S- 32.2-A2 либлованы по шилоте: 540		спечения: 17F379. ны годными и допущены к	Подпись и клеймо поверителя	Court 1, 22, moketer I.E.				-			с приложением И 2008 и разделом «Поверка»	ь зряда в соогветствии с	
ство о приемке	нные общего назначения	dep: C 00890	и ГОСТ 29329-92 и признаны го	b OTK		о поверке	нные общего назначения 	1 38.1.6.	снтификатор программного обек и первичной поверки признан	Код ибровки Дата повсрки	175670 18.01.2012						Me!	в проводится в соответствии оверки весов» ГОСТ Р 53228-2 по эксплуатации.	ныи интервал - ис оолее т года ерки: эталонные гири 4-го ра :005.	
Свидетель	Весы электров	Заводской ном	Соответствую	Представител		Заключение	Bech alektpo	Версия ПО: 1	Цифровой иде На основания применению	N Kar	1						Вниман	Поверка весо «Методика по руководства	межповероч Средства пов ГОСТ 8.021-2	

172 ПРИЛОЖЕНИЕ И (справочное)

			EI INANI IS	COUSTATETRIC	total and the second se	日本になるのない	14841
	BUT		E anna 3	ME 2 844 DOD	Гигрометр в сборе	1 urt.	0
V	3 Украины 14307-	481.001-92))	M6.2.844.000ПС	Паспорт	1 3K3.	
		These of the	BIAT_1	M6.2.844.000 MG	Инструкция по	1 343.	
		- (Омтатель	ALLUT: ALL	
	NIO.2.044.000	2		MG.7.062.016	фитиль	5	
	НАЗНАЧЕНИ	= ИЗЛЕПИЯ		RUP, HS	SENE DARTON I LACE NO.	29100 NGT DUNIOGX	an house house house
				M6.6.876.247	Kopooka	IVULLI OF	
тр псих	рометрический	ВИТ предназнач	нен для	A Tration	CONPABKN K LEF	MOMEIFAN	2
носител	ьной влажности	и температурь.	воздуха.	Таблица 4	Исполнение	сигрометра	St. Of all Burley of
	2.TEXHNYECKI	<i>AE XAPAKTEP.</i>	ИСТИКИ	CANADOIN OF	BMT-1	T PLANCET B	NT-2 STO THE
	2			Термометры	Калибровочн	ые отметки, °С	
еские ха казаны	рактеристики ги в таблице 1.	грометра в зави	асимости от	10.000 1000 1000 1000	10 15 20 2 Tonpa	5 15 20 вки, °С	25 30 4
l a 1				"CUVIN" AD	20 00008	30	
-00	Диапазон измерения	емпературный диапазон	Диапазон измерений	"Увлажненный"	102 1031 00 1	40 L	CN1-1
HNG	относительной	измерений	температуры, °С	Проверено ОТК	A CLARK CONTRACTOR	16.(0110 - 0	Bright S
1-1	ОТ 20 до 90	OT 5 A0 25	От 0 до 25	00 00 E1 E	5. CBNDETENbCTBC	O IPHEMKE	
	От 54 до 90	От 20 до 23	От 15 до 40	Гигрометр психром	летрическии ВИТ NE	VKDANHЫ 1430	7481.001-92 v
T-2	От 40 до 90	От 23 до 26	От 15 до 40	треоованиям техни			
10001-	От 20 до 90	От 26 до 40	OT 15 Ao 40	Поверка проведена	представителем	q	Sn)
		O O D O O		гп "Поптавастаниас	тметрология"	11)	
DTHAR NO	TDELLHOCTE TEDM	DMETDOB LULDOM	етра с учетом			3	(n
DABOK H	е должна превы	шать +0,2 °C.	Intrational International	Клеймо поверки)	
абсолк	итной погрешнос	ти гигрометра г	при скорости		1-THA BUNGLING	и ВИТ-2 под	лежат поверке
0,5 40	1 м/с указан в та	блице 2.		I игрометры психр арема выпуска с про	ометрические риго	атации гигрол	метры подлеж
				поверке или калиби	ровке в зависимости	от области п	рименения.
Typa no	'cyxomy"	Y,9	9	Межповерочный ин	тервал - не оолее 2 л 6. ГАРАНТИЙНЫЕ О	ERISATENDC	TBA
RKI	>	+	<u> </u>	6.1. Предприятие	- изготовитель гаран	TUPYET COOTE	зетствие гигро 207481 001-02
DO 30 BKJ	The operation of the	I ŦI	9	требованиям техни	Heckux ychobuu 1 y 3	украины 140	BUHAHANY PNH
40 BKJ		+1	2	соблюдении потре	оителем условии гра	HUIDPINDE	in the second second

173 ПРИЛОЖЕНИЕ К (справочное)

±7 6. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА ±6 6.1. Предприятие - изготовитель гарантирует соответствие гигрой

174 ПРИЛОЖЕНИЕ Л (справочное)

5. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ		
5.1 Температура в помещении должна быть (в зависимости от варианта исполнения) от мннус 10 до +35°C. Относительная влажность от 30 до 95%. В воздухе не должно содержаться вредных примоссей, вызывающих коррозию. 5.2 Динамометры не должны подвергаться одностороннему натреву или охлаждению. 5.3 Распакованные динамометры подвергаться одностороннему натреву или охлаждению. 5.3 Распакованные динамометры подвергаться одностороннему натреву или охлаждению. 5.4 Работу с динамометры проводить в соответстван с «Куховодгозом по окслиуатации». 5.6 Автогрически запрещается нагрузка динамометров, превышающая наибольший предел 13.6 Динамометр содержать в часноги и нериодизет от пыли.		
5.7. Динамомстры в эксплуатации должны подвергаться периодической поверке один раз в год. Поверка динамомстры должна осуществиться по ГОСТ 8.287. 5.8 К рамонтым работах долускаются только сисциальсть службы сервиа предприятия-натотовителя или специалисты, процедшие обучение и имасощие осолестства одок резредствана. 5.9 При включенном динамомстре запредствата силмать комкух вгоричного измерительного прособразователя, разбирать узел грузоприемного устройства и устранять неисправности в работе динамомстра.	Содержание Содержание Стр. 1 Назначение 3 2 Основные технические данные. 3 3 Комплектация. 4	Ê.
6. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ Динамометр перепосной эталонный 3-го разраль село С. 2-200 И заводской номер 2536 С. сответствие стол инистра и признан годиным к эксплуатации. 26 ДЕН 2011 20 г. Контрадения С. 25 ДЕИ 2011	о псиническое осолуживание	••
7. ЗАКЛЮЧЕНИЕ О ПОВЕРКЕ Динамометр перепосной эталонный 3-го разрила 200-3-2.00 М заволской номер <u>05364</u> на основания результатов первичной поверки признан годным и допушен к применению. 27 ДКН 2011		
или поверии " »		
 СВЕДЕНИЯ ОБ УПАКОВКЕ Упаковку вссов следует производить согласно ГОСТ 12997 и в соответствии с комплектом конструкторской документации. 		

175 ПРИЛОЖЕНИЕ М (справочное)

176 ПРИЛОЖЕНИЕ Н (справочное)

177 ПРИЛОЖЕНИЕ П (справочное)

он лизильнов Агентство по техническому регулированию и метрологии Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в.г. Саикт-Петербурге и Ленииградской области» (ФБУ "Тест-С-Петербург") СВАДКЕТЕЛЬСТВО О ПОВЕРКЕ № 0127013 Действительно до "15 - августа 2013 г.	Средство измерений Машина Сжатия наименование, тил средства измерений MC-1000 шкалы 200;500;1000 кН	Серия и номер клейма предыдущей поверки <u>053494071</u> заводской N ₂ <u>1513</u> принадлежащее <u>3AO "Эксперементальный завод"</u> иНН 7806037513 наименование юридического (физического) лица. ИНН иОЕерено в соогветствии с <u>ММ-2845 "Машина сжатия"</u> поверено в соогветствии с <u>ММ-2845 "Машина сжатия"</u>	с применением эталонов Электронный динамометр DK-C-2000-0,5 №00159 наименование, заводской номер, разряд, класс или позрешностиь при следующих значениях влияющих факторов: Температура в помещении 20	(+/-5)*С и относительная влажность 65 (+/-15)% факторов, пормированных в документе на методику поверки, с указанием их значений и на основании результатов первичной (<u>деридодической</u>) поверки соответствует 9604-84 и признания фридодным к применению Поверительное клеймо Поверительное клеймо Поверитель ССС поверитель ССС поверитель ССС поверитель ССС Одимов подлима подлима одимов од
по техническому регулинованию и метрологии Федевлльное госудиственное учерехдение центр испыганий и сертификации - спетербург (ФГУ - ТЕСТ-СПЕТЕРБУРГ") (ФГУ - ТЕСТ-СПЕТЕРБУРГ") СВИДЕТЕЛЬСТВО ОПОВЕРКЕ № 601269 Лействительно до "25 "августа 2012 г.	Средство измерений <u>Машина сжатия</u> наименование, тил средства измерений MC – 1000 (200, 500, 1000 кH)	серия и номер клейма предыдущей поверки <u>т – 10 – СП</u> заводской Ne <u>1513</u> аводской Ne <u>3AO « Экспериментальный завод »</u> принадлежащее <u>ЗАО « Экспериментальный завод »</u> ина. ина. <u>анименование кридического (физического) лица. инн</u> ИНН 7806037513 поверено в соответствии с <u>ПОСТ 8.136-74; 8905-73. Пресса гидравлли-</u> поверено в соответствии с <u>наименование и номер документа на методик поверки</u> . кие для испытаний строит.материалов.Методы и ср-ва поверки.	с применением эталонов Намометр электронный AUUC-1000И-1 № 358 <i>наименование.</i> завобской номер, разряд. класс или поврешность <u>при спедующих</u> значениях влияющих факторов: <u>при спедующих значениях влияющих факторов:</u>	Температура 20 ° С; влажность бъобущинено в факторов, нормированных в документе на методику поверки, с указанием их значений и на основании результатов первичной (периодической) поверки соответствует описанию типа Госреестр и признано пригодным к применению Поверительное клеймо поверитель ПС Сысоев Ю.А. поверитель поверитель подпись одамилия И.О.

ПРИЛОЖЕНИЕ Р (справочное)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Санкт-Петербурге и Ленинградской области» (ФБУ "Тест-СПетербург") СВАДЕТЕЛЕЛЕСТВО	О ПОВЕРКЕ № 0127014 Действительно до "15 •августа 2013 г. Средство измерений псу-250 шкалы 250;100 тс	Серия и номер клейма предыдущей поверки <u>053494072</u> заводской № <u>938</u> принадлежащее <u>3АО "Эксперсементальный завод"</u> принадлежащее <u>3АО "Эксперсементальный завод"</u> ИНН 7806037513 поверено в соответствии с <mark>ГСИ ГОСТ 8.136-74"Прессы гидравлический для поверено в соответствии с<mark>ГСИ ГОСТ 8.136-74"Прессы гидравлический для испытаний строительных материалов. Методы и средства поверки. испытаний строительных материалов. Методы и средства поверки. с применением эталонов <u>Электронный динамометр DK-C-2000-0,5 №00159</u> с применением эталонов наименование, заводской номер, разряд, класс или поврешность</mark></mark>	при спедующих значениях влияющих факторов: Температура в помещении 20 приводят перечень алияющих (+/-5)*С и относительная влажность 65 (+/-15)% фэкторов. иорииованных в документе на методику поверки, с указанием их значений факторов. иорииованных в документе на методику поверки, с указанием их значений и на основании результатов первичной (периодической) поверки соответствует описанию типа Госреестр 1476-65 и признаи пригодным к применению Поверительное клеімо Поверительное клеімо поверитель ССЛ Сладов А.В. поверитель ССЛ Сладов А.В. одликость СЛ Сладов А.В. поверитель ССЛ Сладов А.В. одлики и Одлиов А.С.
по изуническому растениство по изуническому растивное агентство ведеральное госудаетвенное учреждение центр испытаний и сертификации - спетербург (ФГУ "ТЕСТ-СПЕТЕРБУРГ") СВИДЕТЕЛЬСТВО СВИДЕТЕЛЬСТВО	DMJ О ПОВЕРКЕ № 601270 Действительно до "25 "августа 2012г. Средство измерений Пресс. гидравщический 2012г. ПСУ - 250 (100, 250 гс.) 100, 250 гс.)	Серия и номер клейма предчудущей поверки	при следующих значениях влияющих факторов: ДаВЛЕНИЕ 765 MM PT CT TCMIIEPaTypa 20 ° C; ВЛАЖНОСТЬ 65 %6 факторов. нормированных в болументе на методику поверки, с указанием их значений и на основании результатов первичной (периодической) поверки соответствует описании результатов первичной (периодической) поверки соответствует и на основании результатов первичной (периодической) поверки соответствует описании результатов первичной (периодической) поверки соответствует и на основании результатов первичной (периодической) поверки соответствует описанию типа Госреестри признано пригодным к применению Поверительное клеймо поверитель

ПРИЛОЖЕНИЕ С (справочное)

накладная № 77 локумент о качест	HCII	ыта	цех № а №	27	БРИЦ	от 0	7.02.	<u>N</u> ⁰ 12	316	4 0	1 00.	.02.1	2		•
заказ 1690		phan		38	казчи	к	-	··	• • • • •						
				1			ХИМ	ичес	кий с	остав				-	твер-
наименование	плав	ка	-BO	С	Mn	Si	Р	s	Cr	Ni	Cu	Мо	Va	Ti	дость
астина	~ IC	-,	6				11.4					<u>}</u>	1214		HRC5
	67-	7	общи	ий вес,	, КГ	24,0						2			1-60
материал, гост			вид об	бработ	гки		тј	ребов	ания ,	цля те	рмоо	брабо	отки		контролн
y10			3/0					HR	C 55 -	50					отк
1ex 042	ИСП		Кире	ПО	БРИ	НЕЛ	ЛЮ	БП 	324	·	от 10	¢.02.1	орма 1 2	1 сто	401-123-07
цех 042 накладная № 84 документ о качест	Г. ИСП тве мато	ІРБ (1	Циуд АНИЕ цех № га №	ПО 2 27	БРИ	НЕЛ от С	ІЛЮ 99.02.	БП № 12	324	a	от 10	ф. 02.1	орма 1 2	1 сто	401-123-07
цех 042 накладная № 84 документ о качест заказ 1690	Г. ИСП ве мато	ІРБ /	Циуд АНИЕ цех № а №	ПО 2 27 за	БРИ	НЕЛ от С	IJІЮ 99.02.	ып № 12	324	·	от 10	ф. 02.1	орма 1 2	1 сто	401-123-07
цех 042 накладная № 84 документ о качест заказ 1690 чертеж,	ИСП ве мато	IРБ / /	Ниуб АНИЕ цех Ма а № кол	ПО 2 27 3а	БРИ	НЕЛ от С	илю 99.02. хим	№ 12	324 кий с	остав	от 10	фс.02.1	орма 1 2	1 сто	401-123-07
акладная № 84 документ о качест заказ 1690 чертеж, наименование	ИСП ве мате плав	ІРБ / БЫТ / ериал	Кол -ВО	ПО 2 27 3а С	БРИ казчи Мп	НЕЛ от С ик Si	ИЛЮ 99.02. ХИМ Р	БП № 12 8	324 кий с Сг	а остав Ni	от 10	ф. .02.1	орма 1 2 Va	1 сто Ті	401-123-07 твер- дость
астина	П. ИСП ве мато Плав 61	ІРБ / /	Ниуб АНИЕ цех № а № Кол -во 12	ПО 2 27 3а С	БРИ казчи Мп	HEЛ ot C Ik Si	ИЛЮ 99.02. ХИМ Р	№ 12 S	324 кий с Сг	octab	от 10	фа .02.1	орма 1 2 Va	1 сто	401-123-07 твер- дость <i>НРС 3</i> - 57
акладная № 84 документ о качест заказ 1690 чертеж, наименование	П. ИСП ве мато плав 61	IPE / IDIT/ ериал жа 51	Ниу В АНИЕ цех № а № Кол -во 12 общи	ПО 2 27 3а С	БРИ казчи Мп	НЕЛ от () ик Si 24,4	ИЛЮ 99.02. ХИМ Р	№ 12 Я	324 кий с Сг	а остав Ni	от 10	фа .02.1	орма 1 2 Va	1 сто	401-123-07 твер- дость <i>НРС 3</i> - 57
ех 042 накладная № 84 документ о качест заказ 1690 чертеж, наименование астина — — – материал, гост	П. Ве мато Плав 61	IPБ / /	 Ниу АНИЕ цех № кол во 12 общи вид о 	ПО 2 27 3а С ай вес, бработ	БРИ казчи Мп , кг тки	НЕЛ от С ік Si 24,4	ІЛЮ 99.02. ХИМ Р	№ 12 яичес S	324 кий с Сг ания	остав Ni Для те	от 10	фа .02.1	орма 1 2 Va	1 сто	401-123-07 твер- дость <i>НРС 3</i> ~ 52 контрол
ех 042 накладная № 84 документ о качест заказ 1690 чертеж, наименование кастина материал, гост у10а	П. ИСП ве мато плав 61	IPE / /	Ниуб АНИЕ цех Ма а № Кол -во 12 общи вид о	ПО 2 27 3а С бработ /D	БРИ казчи Мп , кг тки	НЕЛ от () (к Si 24,4	ІЛЮ 99.02. ХИЛ Р	№ 12 личес S ребон HR	324 кий с Сг с 55 -	остав Ni для те	от 10	фа .02.1	орма 1 2 Va	1 сто	401-123-07 твер- дость <i>НРС 3</i> – 52 контрол ОТК

180 ПРИЛОЖЕНИЕ Т (справочное)

ООО «СЕВЕРНАЯ СТОЛИЦА»

ИНН 7801253408 КПП 780101001 ОГРН 1037800129608 Р/сч. 4070281030000004220 К/сч. 3010181080000000861 БИК 044030861 ОАО «АБ «РОССИЯ» г.Санкт-Петербург

Юр. адрес: 199155, Россия, г. Санкт-Петербург, ул. Железноводская, д. 17/5, лит Д Почт.адрес:191124, г. Санкт-Петербург, пл. Растрелли, д.2: Тел./факс: (812) 331-7-331 e-mail:s.stolica@k-group.su, www.k-group.su

Исх. № 44 от 2 апреля 2014 г. Вх. № Для предоставления в диссертационный совет

АКТ О ВНЕДРЕНИИ результатов диссертационного исследования

Настоящим актом удостоверяется, что методика расчета, содержащаяся в диссертации «Развитие методов расчета сжатых железобетонных элементов при длительном загружении с учетом мгновенной нелинейности бетона» аспиранта кафедры технической механики ФГБОУ ВПО «Санкт-Петербургский государственный архитектурно-строительный университет» Елистратова Владимира Николаевича, приняты к использованию и применены проектным институтом ООО «Северная Столица» группы компаний К-ГРУПП при оценке несущей способности монолитных железобетонных колонн при проектировании административного здания в г. Мурманск в части методики расчета нормативной условной критической силы с учетом мгновенной нелинейности и нелинейной ползучести бетона.

Главный конструктор по железобетонным конструкциям Заместитель генерального директора еверная monung

-Пете

H. В. НовиковД. И. Кораблёв