РУДНЫЙ Игорь Александрович

ТРЕЩИНОСТОЙКОСТЬ РАСТЯНУТЫХ И ИЗГИБАЕМЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ С УЧАСТКАМИ НАРУШЕННОГО СЦЕПЛЕНИЯ

Специальность 05.23.01 – Строительные конструкции, здания и сооружения

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в ФГБОУ ВПО «Санкт-Петербургский государственный архитектурно-строительный университет»

Научный руководитель: Трофимов Александр Васильевич,

кандидат технических наук, доцент

Официальные оппоненты: Талантова Клара Васильевна,

доктор технических наук, доцент,

ФБГОУ ВПО «Петербургский государственный университет путей сообщения имени Императора Александра I», кафедра строительных конструкций,

профессор;

Курлапов Дмитрий Валерьевич,

кандидат технических наук, доцент, ФГКВОУ ВПО «Военный институт (инженерно-технический) Военной академии материально-технического обеспечения им. генерала армии А.В. Хрулева», г. Санкт-Петербург, кафедра гидротехнических сооружений, строительных конструкций и механики твердого тела, профессор.

Ведущая организация: ФГАОУ ВО «Санкт-Петербургский

политехнический университет Петра

Великого»

Защита диссертации состоится «02» июля 2015 г. в 14^{00} часов на заседании диссертационного совета Д **212.223.03** при ФГБОУ ВПО «Санкт-Петербургский государственный архитектурно-строительный университет» по адресу: 190005, г. Санкт-Петербург, 2-я Красноармейская ул., д. 4, зал диссертационного совета (аудитория 219).

Телефакс: (812) 316-58-72; Email: rector@spbgasu.ru

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВПО «Санкт-Петербургский государственный архитектурно-строительный университет» и на сайте <u>www.spbgasu.ru</u>

Автореферат разослан «____»____ 2015 г.

Ученый секретарь диссертационного совета доктор технических наук, профессор

Кондратьева Лидия Никитовна

І. ОБШАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования

Особенности, присущие железобетонным конструкциям, такие как взаимодействие разномодульных материалов, дискретное расположение трещин, неупругая работа армируемого материала, качество сцепления арматуры с бетоном, обуславливают сложность оценки напряженно-деформированного состояния и разработки методов расчета. Наличие дискретно расположенных участков нарушенного сцепления арматуры с бетоном изменяет напряженно-деформированное состояние элемента и затрудняет расчет таких конструкций, а следовательно, и принятие обоснованных конструктивных решений.

Нарушение сцепления арматуры с бетоном возникают как на стадии возведения конструкций (некачественное выполнение бетонных работ и не соблюдение технологий), так и во время их эксплуатации (воздействия нефтепродуктов; в результате разного рода температурных деформаций; коррозии арматуры; механических повреждений защитного слоя). Многообразие причин и их разная природа возникновения создают дополнительные трудности в учете дефектов нарушенного сцепления при расчете железобетонных элементов.

В современной нормативной литературе по железобетонным конструкциям не затрагиваются вопросы расчета элементов с нарушенным сцеплением арматуры с бетоном, что не позволяет в расчетах учитывать особенности таких конструкций.

В работе исследуются вопросы влияния нарушенного сцепления на образование и развитие трещин в растянутых и изгибаемых железобетонных элементах на всех стадиях напряженно-деформируемого состояния.

Степень разработанности темы исследования

Исследованием конструкций с нарушенным сцеплением арматуры с бетоном занимались российские и зарубежные ученые: А.А. Бабаян, В.В. Белов, В.И. Белов, А.И. Букаченко, А.А. Вайсфельд, Н.М. Васильев, П.И. Васильев, О.Г. Виноградов, Г.И. Горчаков, Е.А. Гузеев, В.Н. Деркач, С.А. Дмитриев, В.И. Елисеев, В.С. Ерофеев, Г.С. Жук, И.Н. Заславский, В.З. Захаров, Л.И. Кошелева, Д.В. Курлапов, А.А. Кучеренко, Т.И. Кэсккюла, Ф. Леонгардт, Ю.П. Линченко, В.Д. Лихачев, В.М. Медведев, В.И. Морозов, Я.А. C.E. B.M. Москвин, Мильян, К.Д. Некрасов, Л.В. Образцов, Э.Ф. Панюков, Е.Н. Пересыпкин, В.И. Новгородский, А.И. Попеско, А.А. Прокопович, Ю.Г. Решетарь, О.А. Рочняк, О.П. Рысева, В.Ю. Спрыгин, Л.А. Сейланов. Сетков, Γ .M. К.В. Талантова, С.Я. Хомутченко, И.С. Шибанов, Ю.А. Шумилкин, А.Н. Юдин, М.Н. Яромич и др.

Теоретические основы расчета конструкций по образованию и раскрытию трещин были заложены такими учеными, как: А.В. Алексейченко, Ш.А. Алиев, Б.А. Альтшулер, К.К. Антонов, Т.И. Астрова, В.Н. Байков, В.И. Белов, О.Я. Берг, А.И. Букаченко, П.И. Васильев, А.А. Веселов, П.Н. Ганага,

А.А. Гвоздев, Б.С. Гольдфайн, Л.М. Городецкий, Н.П. Городова, Ю.П. Гуща, Макаревич, А.И. Житомерский, A.A. Н.И. Карпенко, В.М. Кольнер, А.Н. Кузнецов, Г.А. Молодченко, Н.М. Мулин, Я.М. В.И. Мурашев, T.A. Мухамедиев, Немировский, A.A. Н.Я. C.M. Скоробогатов, Я.В. Панарин, Столяров, A.B. Трофимов, М.М. Холмянский, Г.Н. Шоршнев, М.Я. Штаерман, Г.П. Яковленко и др.

Цель и задачи исследования

Целью диссертационной работы является экспериментальнотеоретическое исследование напряженно-деформированного состояния и процесса образования и развития трещин в растянутых и изгибаемых элементах с участками нарушенного сцеплением арматуры с бетоном.

Задачи исследования:

- 1. Разработка метода расчета образования и развития трещин в растянутых железобетонных элементах с дискретно расположенными участками нарушенного сцепления.
- 2. Разработка метода расчета образования и развития трещин в изгибаемых железобетонных элементах с дискретно расположенными участками нарушенного сцепления.
- 3. Экспериментальное исследование взаимодействия арматуры различных классов с бетоном.
- 4. Экспериментальное исследование влияния длины участков нарушенного сцепления на образование и развитие трещин в центрально растянутых железобетонных элементах.
- 5. Экспериментальное исследование влияния длины и расположения участков нарушенного сцепления на образование и развитие трещин в изгибаемых железобетонных элементах.

Объектом исследования являются растянутый железобетонный элемент прямоугольного сечения с одним центрально расположенным арматурным стержнем с участками нарушенного сцепления и железобетонная балка прямоугольного сечения, армированная поперечной и продольной арматурой с участками нарушенного сцепления при кратковременном действии соответственно растягивающих сил и изгибающих моментов.

Предметом исследования является процесс образования и развития трещин в растянутых и изгибаемых железобетонных элементах с участками нарушенного сцепления.

Научная новизна исследования:

- 1. Разработан метод расчета растянутых и изгибаемых железобетонных элементов, с дискретно расположенными участками, имеющие различные параметры сцепления арматуры с бетоном по второй группе предельных состояний.
- 2. Выполнена оценка расположения и длины участков нарушенного сцепления на усилие образования трещин с учетом условий закрепления арматуры на опорах в изгибаемых и растянутых элементах.

- 3. Получены новые экспериментальные данные о сцеплении арматуры с бетоном и влиянии участков нарушенного сцепления на усилие образования трещин, их шаг и ширину раскрытия в растянутых элементах.
- 4. Получены новые экспериментальные данные о влиянии процента армирования и расположения участков нарушенного сцепления на момент образования трещин, шаг и ширину их раскрытия в изгибаемых железобетонных элементах.

Методологической основой диссертационного исследования послужили общенаучные методы исследования: идеализация, анализ и моделирование — при выводе расчетных зависимостей; эксперимент, научное наблюдение и описание — при проведении натурных экспериментов железобетонных конструкций.

Область исследования, в соответствии с паспортом специальности ВАК 05.23.01 — Строительные конструкции, здания и сооружения, относится к области исследования, предусмотренного пунктом 3. Создание и развитие эффективных методов расчета и экспериментальных исследований вновь возводимых, восстанавливаемых и усиливаемых строительных конструкций, наиболее полно учитывающих специфику воздействия на них, свойства материалов, специфику конструктивных решений и другие особенности.

Практическое значение и реализация полученных результатов

Ha основании проведенных экспериментально-теоретических исследований расчета растянутых изгибаемых предложен метод железобетонных элементов с дискретно расположенными участками нарушенного сцепления арматуры с бетоном, которая использовалась при оценке напряженно деформированного состояния перекрытия в Поликлинике НУЗ «Отделенческая больница на ст. Исакогорка» в г. Архангельске, что подтверждается актом о внедрении.

Апробация работы

Результаты диссертационной работы докладывались и обсуждались на:

- I Международном конгрессе «Актуальные проблемы современного строительства» (2012 год, СПбГАСУ);
- Международном конгрессе «Наука и инновации в современном строительстве 2012», посвященном 180-летию СПбГАСУ (2012 год, СПбГАСУ):
- II Международном конгрессе «Актуальные проблемы современного строительства» (2013 год, СПбГАСУ);
- III Международном конгрессе «Актуальные проблемы современного строительства» (2014 год, СПбГАСУ).

Публикации

Материалы диссертации опубликованы в 7 печатных работах, общим объемом 2,37 п.л., лично автором - 1,99 п.л., в том числе 3 работы опубликованы в изданиях, входящих в перечень ведущих рецензируемых научных журналов, утвержденный ВАК РФ.

Структура и объем работы. Диссертация состоит из введения, четырех глав с выводами по каждой главе, общих выводов. Диссертация содержит

154 страницы машинописного текста, 17 таблиц, 74 рисунка, 1 приложение и список использованной литературы из 178 наименований работ отечественных и зарубежных авторов.

<u>Во введении</u> сформулирована проблема и обоснована актуальность исследования, поставлены цель и задачи, раскрыта научная и практическая значимость.

<u>В первой главе</u> «Состояние вопроса и направление дальнейших исследований» приведены экспериментальные и теоретические исследования элементов с нарушенным сцеплением арматуры с бетоном, а также рассмотрено состояние вопроса по расчету ширины раскрытия трещин и сцепления арматуры с бетоном в работах различных авторов.

<u>Во второй главе</u> «Расчет трещиностойкости растянутых железобетонных элементов с участками нарушенного сцепления» подробно приведен вывод основных аналитических зависимостей по оценке напряженно-деформированного состояния растянутых железобетонных элементов с участками нарушенного сцепления, расчет образования и развития трещин в таких элементах, а также дана качественная и количественная оценка влияния участков нарушенного сцепления на усилие образования трещин.

<u>В тремьей главе</u> «Расчет трещиностойкости изгибаемых железобетонных элементов с участками нарушенного сцепления» приведен вывод основных зависимостей по расчету трещиностойкости изгибаемых железобетонных элементов с участками нарушенного сцепления для различных условий закрепления арматуры на опорах (при различных граничных условиях), дана качественная и количественная оценка влияния участков нарушенного сцепления на момент образования первых трещин.

В четвертой главе «Экспериментальные исследования железобетонных элементов нарушенным сцеплением» приводятся результаты экспериментальных исследований взаимодействия арматуры бетоном, трещиностойкости растянутых и изгибаемых железобетонных элементов. экспериментальных теоретических сравнение И данных предложенному методу расчета.

В заключении приведены основные результаты диссертационной работы и намечены перспективы дальнейших исследований.

II. ОСНОВНЫЕ ПОЛОЖЕНИЯ И РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ ДИССЕРТАЦИИ, ВЫНОСИМЫЕ НА ЗАЩИТУ

1. Разработан метод расчета растянутых и изгибаемых железобетонных элементов, с дискретно расположенными участками, имеющие различные параметры сцепления арматуры с бетоном по второй группе предельных состояний.

В качестве расчетной модели принята модель составного стержня. Составной стержень принят в виде двухветвевой системы: бетон–арматура. Ветви соединены связями сдвига (контактный слой).

Исходные предпосылки и основное уравнение совместности деформаций:

- в первом приближении ветви деформируются упруго;
- для бетонной ветви справедлива гипотеза плоских сечений;
- взаимные смещения имеют место в пределах контактного слоя;
- взаимные смещения между арматурой и бетоном происходят по центру тяжести арматуры.

$$\varepsilon_{sv} = \varepsilon_s - \varepsilon_{bt},\tag{1}$$

где ε_{sv} — относительные деформации связей сдвига (контактного слоя); ε_s — относительные деформации арматуры; ε_{bt} — относительные деформации бетона на уровне арматуры.

Принимая сдвигающее усилие (S) как внешнее по отношению к ветвям составного стержня, получаем дифференциальное уравнение

$$\frac{S''}{G} = \gamma S + \Delta. \tag{2}$$

Решение дифференциального уравнения из работы А.Р. Ржаницына

$$\begin{cases}
S = C_1 \sinh \lambda x + C_2 \cosh \lambda x + \frac{G}{\lambda} \int_0^x \Delta(\xi) \sinh \lambda (x - \xi) d\xi; \\
S' = \lambda \left[C_1 \cosh \lambda x + C_2 \sinh \lambda x + \frac{G}{\lambda} \int_0^x \Delta(\xi) \cosh \lambda (x - \xi) d\xi \right]; \\
S'' = \lambda^2 \left[C_1 \sinh \lambda x + C_2 \cosh \lambda x + \frac{G}{\lambda} \int_0^x \Delta(\xi) \sinh \lambda (x - \xi) d\xi \right],
\end{cases} (3)$$

где $\lambda = \sqrt{G\gamma}$; ξ — вспомогательная переменная.

Основным параметром в решении дифференциального уравнения (3), учитывающим работу контактного слоя и определяющим его деформативность, является λ . Для решения задачи учета нарушенного сцепления, основанной на модели составных стержней, необходимо оценить влияние факторов, приводящих к нарушению контакта арматуры с бетоном, на параметр λ . Факторы, влияющие на параметр λ , приведены в таблице 1.

Учет всех факторов на параметр λ выполнялся с помощью коэффициента χ (относительная прочность сцепления), предложенного А.А. Прокоповичем, который определяется по формуле

$$\chi = \frac{\tau_{o\tau}}{\tau_o},\tag{4}$$

где $\tau_{o\tau}$ – условные напряжения сцепления при недостаточном или нарушенном сцеплении; τ_o – условные напряжения сцепления при обеспеченном сцеплении.

На основании совместного решения системы (3) и формулы (4) было получено уравнение для определения параметра $\lambda_{\rm ot}$ для участков с нарушенным сцеплением

$$\lambda_{o\tau} = \frac{\lambda_o \chi \cdot \text{th} \lambda_o \frac{l}{2}}{\text{th} \lambda_{o\tau} \frac{l}{2}},$$
 (5)

где λ_0 – параметр сцепления для участка с обеспеченным сцеплением; χ – относительная прочность сцепления; l – длина участка с нарушенным сцеплением.

Параметр $\lambda_{o\tau}$ – для участков с нарушенным сцеплением, определяется из решения трансцендентного уравнения (5). Значения коэффициентов х из работы А.А. Прокоповича приведены в таблице 1.

Значения коэффициента у Таблина 1

значения коэффициента х таолица т			
Причина нарушения сцепления		Тип арматуры	
		Периодического	Гладкая
		профиля	
Коррозия арматуры	до 3 мм	$0,6 \div 0,7$	$0,4 \div 0,5$
	более 3 мм	≤0,1	
Бензин и керосин		1,0	0,5
Дизельное топливо		0,75	0,4
Минеральные масла		(1-0.1t), но не менее 0.3	
		t – длительность воздействия в годах	
Длительный стационарный нагрев	20^{0} C	до 100°C	1,0
	60^{0} C		0,85
	120 ⁰ C	1,0	0,725
	180°C		0,7
Температурные воздействия при пожаре	150 ⁰ C	0,7	
	200^{0} C	0,6	
	300^{0} C	0,4	
	400^{0} C	0,3	
	500°C	0,15	
Воздействия	ниже -40 ⁰ C	0,7÷0,8	
отрицательных	от -20°C до -40°C	0,8÷0,9	
температур	До -20 ⁰ C	0,9÷0,95	
Механические повреждения защитного слоя		$\left(S_p - S_{p(o\tau)}\right)$	
		$\frac{\langle p - p(0) \rangle}{S_p}$	

Усилие на элемент прикладывается к арматуре N_1 (рис. 1, a) и к бетону N_2 (рис. 1, б). Расчет элементов с дискретно расположенными зонами нарушенного сцепления выполняется по участкам, от крайних участков к средним, переход между расчетными участками осуществляется на основании принципа освобождаемости.

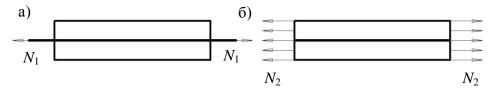


Рис. 1. Схемы нагружения железобетонных элементов

На основании решения системы уравнений (3) получены выражения для определения относительных деформаций ε_s , ε_{ht} по длине элемента и взаимных смещений между арматурой и бетоном (б) с учетом дискретного расположения участков нарушенного сцепления при упругой и упругопластической работе контактного слоя (рис. 2, а).

Критерием перехода из упругой в упругопластическую стадию принималось достижение пограничными с арматурой волокнами бетона в радиальном направлении напряжений $R_{bt,ser}$.

Выражение для определения предельных касательных напряжений принималось из исследований А.В. Трофимова

$$\tau_u = \frac{2R_{bt,ser}}{\text{ctg}\alpha_0},\tag{6}$$

где α_0 – условный угол наклона бетонного выступа к продольной оси стержня. М.М. Холмянским значение с $tg\alpha_0$ предлагается принимать в первом приближении равным 0,3. Для участков с нарушенным сцеплением τ_u определяем с учетом формулы (4).

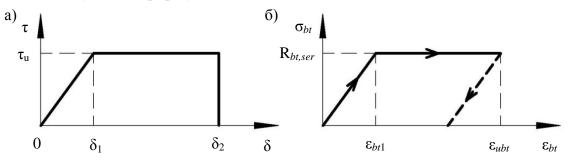


Рис. 2. Идеализированные диаграммы работы контактного слоя (а) и бетона (б)

Работа растянутого бетона описана в виде идеализированной диаграммы Прандтля (рис. 2, б). Возникновение трещины сопровождается перераспределением усилий между бетоном и арматурой: у берегов трещины напряжения в бетоне падают до нуля, а деформации до величины $\varepsilon_{ubt} - \varepsilon_{bt1}$ (упругая разгрузка материала) (рис. 2, б); напряжения в арматуре возрастают на некоторую величину. На основании вышесказанного получаем условие образования трещин

$$\varepsilon_{bt1} = \varepsilon_{bt,el(x)},\tag{7}$$

где ε_{bt1} определяем в соответствии с диаграммой (рис. 2, б), $\varepsilon_{bt1} = \frac{R_{bt,ser}}{E_b}$.

Усилия последовательного образования трещин определяются поэтапно: на первом шаге, рассматривая полную длину элемента, определяется $N_{crc,1}$, затем оценивается отдельно каждый блок элемента на участке между трещинами и находится $N_{crc,i}$ с определением шага трещин. Расчет производится до достижения предельных деформаций в арматурном стержне (ε_{su}) или в контактном слое напряжений τ_{u} . Стабилизация процесса образования трещин происходит при достижении $\tau=\tau_{u}$.

Получив картину распределения трещин и размер блоков железобетонного элемента из расчета последовательного образования трещин, определяем ширину раскрытия трещин. Дискретное расположение участков с различными параметрами сцепления приводит к изменению положения нулевой точки

эпюры касательных напряжений, поэтому ширину раскрытия трещин при упругой и упругопластической работе контактного слоя следует определять как сумму взаимных смещений арматуры и бетона от нулевых точек эпюры касательных напряжений соседних блоков.

В общем случае ширину раскрытия трещин определяем из выражения

$$a_{crc(n)} = \left(\delta_{c_{n-1}} + \delta_{c_n}\right) - \frac{R_{bt,ser}}{E_b} \cdot (c_n + c_{n-1}), \tag{8}$$

где $\delta_{c_{n-1}}$, δ_{c_n} — взаимные смещения арматуры и бетона при упругой (упругопластической) работе контактного слоя от нулевых точек эпюры касательных напряжений. Второе слагаемое в формуле (8) — это собственные удлинения бетона на участке между трещинами.

Предложенная методика расчета позволяет определить ширину раскрытия трещин в растянутых элементах с учетом неравномерного их шага при упругой и упругопластической работе контактного слоя. В диссертационной работе приведена блок-схема расчета образования и развития трещин в растянутых элементах.

В работе рассматривается изгибаемый элемент, загруженный двумя силами по схеме чистого изгиба. Рассмотрены характерные случаи расположения участков нарушенного сцепления: в зоне чистого изгиба (рис. 3, 6), приопорной зоне элемента (рис. 3, 8) и элемент с обеспеченным сцеплением (рис. 3, 4). На основании рассмотренных случаев были получены формулы для определения сдвигающей силы по контакту арматуры с бетоном (5) с учетом дискретного расположения участков нарушенного сцепления.

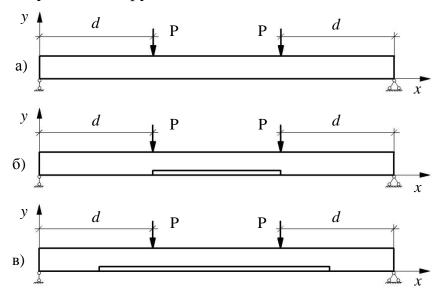


Рис. 3. Варианты расположения участков нарушенного сцепления: а) элемент без нарушения сцепления; б) с участком нарушенного сцепления в зоне чистого изгиба; в) с участком нарушенного сцепления в приопорных зонах

Формулы для определения сдвигающего усилия по контакту арматуры с бетоном были получены для двух случаев граничных условий S=0 (без специальных анкеров) и S'=0 (специальные анкера). Относительные

деформации бетона на уровне рабочей арматуры с учетом участков нарушенного сцепления определяем по формуле

$$\varepsilon_{bt} = \frac{Pdm_0}{B_y} - \frac{\left(0.5h - a\right)\left(\frac{2}{3}h - a\right)S}{B_y}.$$
(9)

Момент образования трещин определяем из условия достижения в крайнем растянутом волокне бетона предельных относительных деформаций (ε_{ubt}). Решение задачи осуществляется по участкам с учетом их количества и дискретного расположения по длине рассматриваемого элемента. Жесткость элемента (B_y) с учетом неупругой работы бетона находим с помощью выражений, полученных Г.П. Яковленко. В диссертационной работе приведено несколько примеров расчета момента образования трещин в конструкциях с нарушенным сцеплением.

Для решения задачи определения ширины раскрытия трещин рассматривалось три характерных расположения участков нарушенного сцепления в зоне действия постоянного момента (рис. 4).

Рис. 4. Варианты рассматриваемых блоков: а) с единым параметром сцепления; б) с четным количеством участков; в) с нечетным количеством участков

Принятые эпюры распределения напряжений в поперечном сечении балки на участке между трещинами приведены на рис. 5.

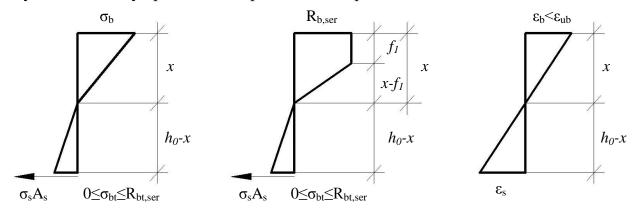


Рис. 5. Распределение напряжений σ_b , σ_{bt} и относительных деформаций на участке между трещинами

Для решения задачи используем следующие уравнения и зависимости:

1) уравнения равновесия

$$\int_{A} \sigma dA = 0; \quad \int_{A} \sigma y dA = M; \tag{10}$$

2) уравнения, связывающие относительные деформации по высоте сечения,

$$\varepsilon_b = \frac{\varepsilon_s \xi}{(1 - \xi)},\tag{11}$$

где
$$\xi = \frac{x}{h_0}$$
;

3) уравнения, связывающие относительные деформации между арматурой и бетоном на уровне растянутой арматуры, а также их взаимные смещения от нулевых точек эпюры касательных напряжений смежных блоков

$$\varepsilon_{sv} = \varepsilon_s - \varepsilon_{bt}; \ a_{crc} = \int_0^{c_{n-1}} \varepsilon_{sv} dx + \int_0^{c_n} \varepsilon_{sv} dx. \tag{12}$$

Дополнительное условие образования трещин в виде $\sigma_{bt(x=0)} \leq R_{bt,ser}$.

В элементах с нарушенным сцеплением в сечении с трещиной происходит перераспределение деформаций арматуры и увеличение неравномерности деформаций крайнего сжатого волокна бетона над трещиной. Резкое увеличение глубины проникновения трещины и сокращение сжатой зоны приводит к увеличению деформаций в крайнем сжатом волокне бетона в сечении над трещиной. Исследования П.И. Васильева, А.А. Прокоповича, Г.М. Спрыгина показали, что относительные деформации рабочей арматуры в конструкциях с нарушенным и обеспеченным сцеплением остаются неизменными.

Увеличение деформаций крайнего сжатого волокна учитываем с помощью коэффициента

$$k_{\Psi_s} = \frac{\varepsilon_{sm(o)}}{\varepsilon_{sm(o\tau)}},\tag{13}$$

где $\varepsilon_{sm(o\tau)}$ — средние относительные деформации растянутой арматуры для элемента с нарушенным сцеплением; $\varepsilon_{sm(o)}$ — средние относительные деформации растянутой арматуры для элемента с обеспеченным сцеплением.

Система разрешающих уравнений при упругой работе сжатой зоны:

$$\xi = -\frac{(\sigma_{s}\mu + \sigma_{bt})\nu k_{\psi_{s}}}{\sigma_{s} - \sigma_{bt}\nu k_{\psi_{s}}} + \sqrt{\frac{(\sigma_{s}\mu + \sigma_{bt})^{2}\nu^{2}k_{\psi_{s}}^{2}}{(\sigma_{s} - \sigma_{bt}k_{\psi_{s}}\nu)^{2}} + \frac{(2\sigma_{s}\mu + \sigma_{bt})\nu k_{\psi_{s}}}{\sigma_{s} - \sigma_{bt}\nu k_{\psi_{s}}}};$$

$$\sigma_{s} = \frac{3M}{bh_{0}^{2} - \sigma_{bt}(1 - \xi)};$$

$$\sigma_{s} = \frac{\int_{\mu}^{bh_{0}^{2}} \frac{(1 - \xi)}{\mu(3 - \xi)}}{\mu(3 - \xi)};$$

$$\sigma_{b} = \frac{\sigma_{s}\xi}{\nu k_{\psi_{s}}(1 - \xi)}.$$
(14)

Если выполняется условие $\frac{M}{bh^2} > 0.5 R_{b,ser} \xi \left(1 - \frac{\xi}{3}\right)$, то в сжатой зоне бетона появляются неупругие деформации, тогда при неупругой работе сжатой зоны:

$$\xi = \frac{2\sigma_{s}\mu + \frac{R_{b,ser}^{2}\nu k_{\psi_{s}}}{\sigma_{s}} + \sigma_{bt}}{\sigma_{s}};$$

$$\frac{f_{1}}{h_{0}} = 1,5 - \frac{\xi}{2} - \sqrt{2,25 + 1,5\xi \left(1 - \frac{\xi}{2}\right) + \frac{\sigma_{bt}}{R_{b,ser}} (1 - \xi)^{2} - \frac{6M}{R_{b,ser}bh_{0}^{2}}};$$

$$\sigma_{s} = R_{b,ser}\nu \frac{k_{\psi_{s}}(1 - \xi)}{\left(\xi - \frac{f_{1}}{h_{0}}\right)};$$

$$\varepsilon_{b} = \varepsilon_{s} \frac{\xi}{k_{\psi_{s}}(1 - \xi)}.$$
(15)

Напряжения σ_{bt} определяются по участкам в зависимости от напряженно-деформированного состояния контактной зоны и расположения участков нарушенного сцепления. Для трёх характерных случаев расположения участков нарушенного сцепления (см. рис. 4) были получены зависимости для определения взаимных смещений арматуры и бетона с учетом напряженно-деформированного состояния сечения элемента. Ширину раскрытия трещин определяем по формуле (8). В диссертации приведены блок-схемы расчета момента образования и ширины раскрытия трещин в элементах с нарушенным сцеплением.

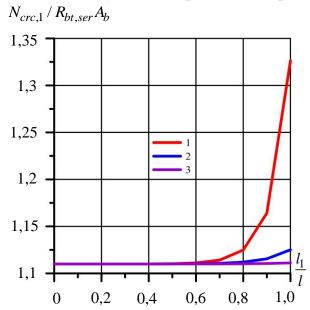
Кривизна элемента определялась по средним относительным деформациям арматуры и бетона на участке между трещинами

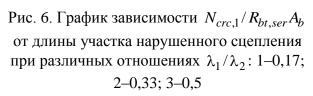
$$y_m'' = \frac{1}{r_m} = \frac{\varepsilon_{s,m} + \varepsilon_{b,m}}{h_0}.$$
 (16)

Деформации $\varepsilon_{s,m}$ и $\varepsilon_{b,m}$ определяются по (14) и (15), соответственно при упругой и неупругой работе бетона сжатой зоны. Напряжения $\sigma_{bt,m}$ определяются по участкам с учетом напряженно-деформированного состояния контактного слоя

$$\sigma_{bt,m} = \frac{\int_{0}^{l_{1}} \sigma_{bt(l_{1}),x} dx + \int_{0}^{l_{2}} \sigma_{bt(l_{2}),x} dx + \dots + \int_{0}^{l_{n}} \sigma_{bt(l_{n}),x} dx}{l_{crc}}.$$
(17)

При эксплуатации возможны несколько вариантов работы конструкции с дефектами:


- 1) сцепление в железобетонной конструкции обеспеченно по всему пролету. В этом случае расчет выполняется по методике, описанной в данной работе, но с единым параметром сцепления λ ;
- 2) сцепление нарушено по всему пролету или на отдельных участках до приложения нагрузки на конструкцию. Расчет выполняем по методике, приведенной в данной работе;
- 3) нарушение сцепления в конструкции произошло во время эксплуатации. Сначала выполняется расчет элемента при параметре


сцепления, соответствующем полностью обеспеченному сцеплению в данной конструкции. Затем выполняется расчет элемента с заданным дефектом от начала загружения и выполняется анализ и прогноз дальнейшей работы конструкции.

2. Выполнена оценка расположения и длины участков нарушенного сцепления на усилие образования трещин с учетом условий закрепления арматуры на опорах в изгибаемых и растянутых элементах.

Дана качественная и количественная оценка влияния длины участков нарушенного сцепления на взаимные смещения арматуры и бетона, которая показала, что развитие участков в зонах передачи напряжений у центрально растянутых железобетонных элементов больше влияет на взаимные смещения, чем расположение участка нарушенного сцепления в центральной части элемента.

Уменьшение зон передачи напряжений или нарушение сцепления в этих зонах приводит к снижению величины деформаций в растянутом бетоне и, соответственно, увеличению усилия образования трещин. При длине участка с нарушенным сцеплением больше 80% от общей длины элемента существенное влияние на величину усилия образования трещин (порядка 22%) оказывает небольшое отношение параметров сцепления ($\lambda_1/\lambda_2 \leq 0,17$) (рис. 6). При отношениях $0,33 \leq \lambda_1/\lambda_2 < 0,5$ влияние длины участка нарушенного сцепления на усилие образования трещин минимально (меньше 5%). При отношениях параметров сцепления 0,5 и более влияние длины участка нарушенного сцепления на усилие образования трещин практически неощутимо.

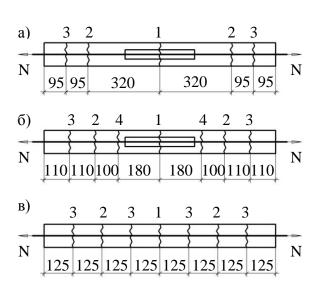


Рис. 7. Схема распределения трещин при различных отношениях λ_1/λ_2 : a) 0,17; б) 0,67; в) 1,0

Важной особенностью влияния участков нарушенного сцепления на процесс трещинообразования является уменьшение шага трещин на участках с

обеспеченным сцеплением, в зависимости от величины нарушения сцепления (рис. 7).

На основании полученных зависимостей был выполнен анализ влияния участков нарушенного сцепления на момент образования трещин для балок с различным процентом армирования (рис. 8, 9).

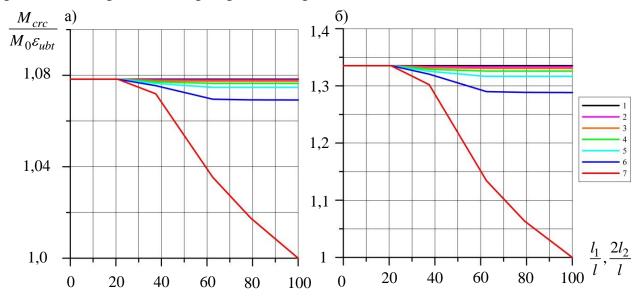


Рис. 8. График зависимости $M_{crc}/M_0 \varepsilon_{ubt} - l_1(2l_2)/l$ для $\mu = 0,67\%$ (a) и $\mu = 2,96\%$ (б) при различных отношениях λ_1/λ_2 : 1–1,0; 2–0,83; 3–0,67; 4–0,5; 5–0,33; 6–0,17; 7–0 для элемента со свободным сдвигом арматуры на опорах

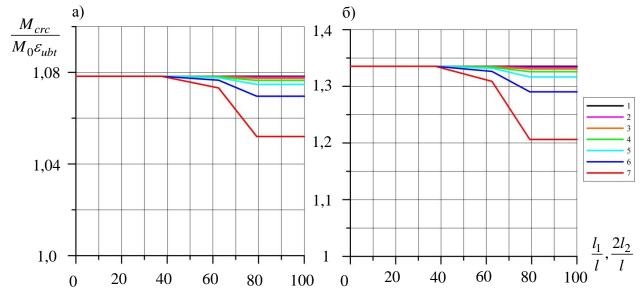


Рис. 9. График зависимости M_{crc} / $M_0 \varepsilon_{ubt}$ – $l_1(2l_2)$ / l для μ = 0,67% (a) и μ = 2,96% (б) при различных отношениях λ_1 / λ_2 : 1–1,0; 2–0,83; 3–0,67; 4–0,5; 5–0,33; 6–0,17; 7–0 для элемента с отсутствием сдвига арматуры на опорах

Из анализа графиков (рис. 8, 9) было выявлено влияние длины участка нарушенного сцепления на момент образования трещин (M_{crc}) в изгибаемых элементах:

1) для элементов со свободным сдвигом арматуры на опорах (без специальных анкеров):

- при длине участков нарушенного сцепления более 40% от общей длины элемента происходит снижение M_{crc} по сравнению с балкой с обеспеченным сцеплением (рис. 8, 9);
- при проценте армирования (μ =2,62%) и полном отсутствии сцепления снижение M_{crc} достигает 33% и соответствует моменту образования трещин неармированной бетонной балки (рис. 6);
- при проценте армирования (μ =0,60%) падение M_{crc} менее 9%, даже при полном отсутствии сцепления арматуры с бетоном (рис. 8);
- при минимальном значении параметра сцепления (λ) существенного снижения величины M_{crc} не возникает (в пределах 5%);
- 2) в элементах с отсутствием сдвига арматуры на опорах (специальные анкера) при большом проценте армирования уменьшение M_{crc} не превышает 12% при полном отсутствии сцепления, и арматура продолжает участвовать в работе элемента.

На основании полученной оценки влияния длины и расположения участков нарушенного сцепления в таких элементах рекомендуется выполнять дополнительную анкеровку арматуры на опорах конструкции для уменьшения влияния этих участков на момент образования трещин.

3. Получены новые экспериментальные данные о сцеплении арматуры с бетоном и влиянии участков нарушенного сцепления на усилие образования трещин, их шаг и ширину раскрытия в растянутых элементах.

Для исследования работы железобетонных элементов с участками нарушенного сцепления на ОАО «Кузнечевский комбинат строительных конструкций и материалов» в г. Архангельске и в лаборатории кафедры железобетонных и каменных конструкций СПбГАСУ было изготовлено 8 образцов для испытания на центральное растяжение и 12 образцов для исследования сцепления арматуры с бетоном. Физико-механические характеристики бетона были определены при испытании кубов размерами $100 \times 100 \times 100$ мм и призм размерами $100 \times 100 \times 400$ мм в соответствии с ГОСТ 10180-2012 и ГОСТ 24452-80. Призменная прочность составляла 43,3 МПа для образцов, предназначенных для исследования сцепления арматуры с бетоном, и 40,2 МПа — для образцов на центральное растяжение.

Исследование взаимодействия арматуры с бетоном и определение параметра λ были проведены на центрально растянутых железобетонных элементах. Образцы имели форму призмы размерами $250\times150\times150$ мм с одним центрально расположенным арматурным стержнем класса A400C и A500C, диаметром 14 или 18 мм в зависимости от серии. В результате исследования было установлено, что сцепление арматуры Ø18 мм выше, чем арматуры Ø14 мм из-за более эффективного профиля.

Образцы для исследования трещиностойкости центрально растянутых железобетонных элементов также изготовлены в форме призмы размерами $1000\times100\times100$ мм, армированные одним арматурным стержнем класса A500C диаметром 12 мм. Всего было испытано 8 образцов: по 3 образца в сериях с нарушенным сцеплением и 2 образца в эталонной серии без нарушения сцепления. Нарушение сцепления выполнялось скульптурным

пластилином. Длина участка нарушенного сцепления составляла 300 мм и 600 мм.

Усилие образования трещин имело хорошее согласование c экспериментальными данными 2-15%. В пределах элементах нарушенным сцеплением возникало меньшее количество трещин на большем расстоянии друг от друга, шаг трещин был неоднородный (рис. 10). Проведенный эксперимент подтвердил влияние нарушенного сцепления на шаг трещин в зонах с обеспеченным сцеплением. Для элементов с участком нарушенного сцепления длиной 300 мм ширина раскрытия трещин увеличивалась по сравнению с эталонными образцами в 3,3 раза, а для образцов с участком нарушенного сцепления длиной 600 мм в 6,5 раз. Сравнение теоретических результатов с опытными данными ширины раскрытия трещин представлено на графике (рис. 11).

Рис. 10. Характерное расположение трещин в опытных образцах: а) без нарушения сцепления; б) участок нарушенного сцепления 300 мм; в) участок нарушенного сцепления 600 мм

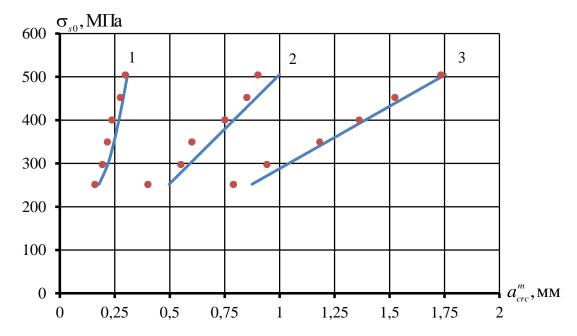


Рис. 11. Зависимость « $\sigma_{s0} - a_{crc}^m$ » для образцов, испытанных на растяжение: 1 — образцы без нарушения сцепления; 2 — образцы с участком нарушенного сцепления 300 мм; 3 — образцы с участком нарушенного сцепления 600 мм

4. Получены новые экспериментальные данные о влиянии процента армирования и расположения участков нарушенного сцепления на момент образования трещин, шаг и ширину их раскрытия в изгибаемых железобетонных элементах.

Образцы для исследования трещиностойкости изгибаемых железобетонных элементов были изготовлены на ОАО «Кузнечевский комбинат строительных конструкций и материалов» в г. Архангельске. Призменная прочность бетона балок составляла 43,3 МПа.

Исследование трещиностойкости изгибаемых железобетонных элементов были проведены на балках размерами 2460×220×120 (мм), армированных двумя плоскими сварными каркасами. Рабочая арматура класса А400 диаметром 14 и 18 мм в зависимости от серии образцов. Поперечное армирование выполнялось стержнями класса В500 диаметром Ø6 мм с шагом 100 мм. Для обеспечения анкеровки на опорных частях балки к арматуре приваривался равнополочный уголок № 3. В зоне чистого арматура отсутствовала. поперечная Нарушение выполнялось скульптурным пластилином. Участки нарушенного сцепления располагались в зоне чистого изгиба, в приопорных зонах и по всему пролету. Нагрузка прикладывалась в третях пролета. Во время испытаний средние продольные деформации измерялись арматуры определялись момент образования трещин, ширина раскрытия трещин, расстояние между трещинами и прогибы в пяти точках по длине элемента.

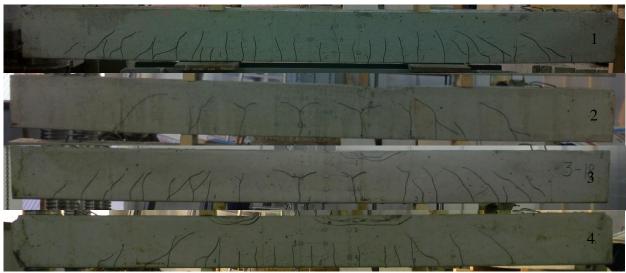


Рис. 12. Характерное расположение трещин в опытных образцах: 1) без нарушения сцепления; 2) сцепление нарушено по всему пролету; 3) сцепление нарушено в зоне чистого изгиба; 4) сцепление нарушено в приопорных зонах

Момент образования трещин имел хорошее согласование с опытными данными в пределах 2–15%. Ширина раскрытия трещин в элементах с нарушенным сцеплением и μ = 1,17% увеличилась в 4,3 раза, а для элементов с μ = 1,93% в 3,1 раза по сравнению с эталонными образцами. В элементах с нарушенным сцеплением по всему пролету и в зоне чистого изгиба возникало характерное разветвление трещин (рис. 12). Влияние участков нарушенного

сцепления на прогибы балок не обнаружено. Сравнение теоретической и экспериментальной ширины раскрытия трещин приведено на рис. 13, а прогибов балок на рис. 14.

Проведено сравнение теоретических данных моментов образования трещин и экспериментальных данных А.А. Прокоповича, результаты имеют хорошее согласование с методикой автора в пределах 5–16%.

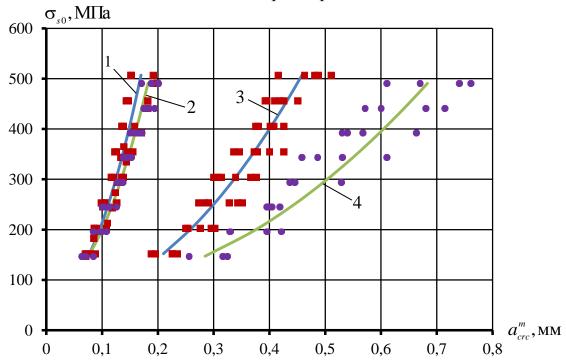


Рис. 13. Зависимость « $\sigma_{s0} - a_{crc}^m$ » для образцов, испытанных на изгиб:

1 — обеспеченное сцепление в зоне чистого изгиба $\,\mu$ = 1,93% ; 2 — обеспеченное сцепление в зоне чистого изгиба $\,\mu$ = 1,17% ; 3 — нарушенное сцепление в зоне чистого изгиба $\,\mu$ = 1,93% ;

4 – нарушенное сцепление в зоне чистого изгиба $\mu = 1,17\%$

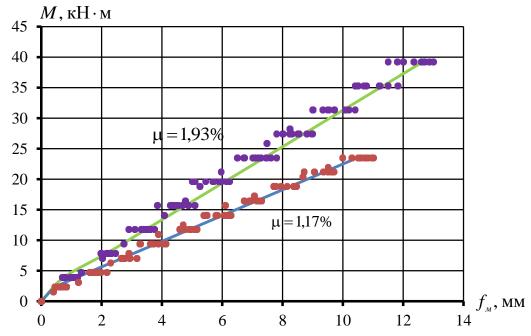


Рис. 14. График зависимости $M - f_{_M}$ для элементов с процентом армирования $\mu = 1,17\%$ и $\mu = 1,93\%$

Общие выводы

- 1. Разработан метод расчета трещиностойкости растянутых и изгибаемых железобетонных элементов с дискретно расположенными участками нарушенного сцепления. Он позволяет учитывать влияние неравномерности шага трещин на ширину их раскрытия на всех стадиях напряженно-деформированного состояния. Проведенная качественная и количественная оценка влияния различной длины участков нарушенного сцепления на взаимные смещения арматуры с бетоном выявила, что их расположение по краям элемента оказывает большее влияние на взаимные смещения арматуры с бетоном, а значит, и на раскрытие трещин. Результаты экспериментальных исследований показали хорошую согласованность с предложенным методом расчета.
- 2. Аналитические зависимости, полученные в результате выполненных позволяют оценить напряженно-деформированное состояние изгибаемых железобетонных элементов И дискретно расположенными участками нарушенного сцепления с учетом упругой и упругопластической работы контактного слоя. Случаи полностью обеспеченного и отсутствующего сцепления являются частными случаями разработанного автором метода расчета.
- 3. Экспериментально-теоретические исследования подтвердили снижение момента образования трещин и увеличение ширины их раскрытия в конструкциях с нарушенным сцеплением. Влияние нарушенного сцепления на прогибы железобетонных балок из высокопрочного бетона не выявлено. Трещины в элементах с нарушенным сцеплением имели большую ширину раскрытия и глубину проникновения; разветвление трещин возникало при нагрузке 26÷44% от разрушающей. При этом горизонтальные ветви трещин четко очерчивали сжатую зону элемента.
- 4. Обнаружено увеличение усилия образования трещин в центрально растянутых элементах с нарушенным сцеплением по сравнению с элементами с обеспеченным сцеплением. Оценка влияния различной длины участков нарушенного сцепления на усилия образования трещин в растянутых элементах выявила, что при длине участка с нарушенным сцеплением больше 80% от общей длины элемента на величину усилия образования трещин оказывает влияние отношение параметров сцепления ($\lambda_1/\lambda_2 = 0.17$ и менее). При отношениях параметров сцепления 0,5 и более влияние длины участка сцепления незначительно. Выявлено влияние нарушенного нарушенного сцепления на процесс трещинообразования, которое выражается в уменьшение шага трещин на участках с обеспеченным сцеплением. Чем меньше величина отношения λ_1/λ_2 , или чем больше сцепление нарушено, тем меньше шаг трещин на участках с обеспеченным сцеплением. Эксперимент подтвердил влияние участков нарушенного сцепления на шаг трещин на участках с обеспеченным сцеплением.
- 5. В изгибаемых элементах снижение момента образования трещин ощутимо зависит от условий закрепления арматуры на опорах. Так, например, у элементов со свободным сдвигом арматуры на опоре, при длине участка

нарушенного сцепления 40% от расчетной длины элемента, происходит снижение трещиностойкости в зависимости от процента армирования до 33%. Для элементов с закреплением арматуры на опоре снижение трещиностойкости составляет не более 15%. Обнаружено, что наиболее неблагоприятное расположение участков нарушенного сцепления в приопорной зоне с их распространением в центральную часть изгибаемого элемента. В таких элементах рекомендуется выполнять дополнительную анкеровку арматуры на опорных частях балки.

6. Диссертация не исчерпывает всех вопросов, связанных с изучением работы железобетонных элементов с нарушенным сцеплением арматуры с бетоном. Дальнейшие исследования целесообразно направить на учет длительных процессов при расчете таких конструкций и изучение механизма влияния ширины раскрытия и глубины проникновения трещин на деформации в крайнем сжатом волокне бетона.

III. ОСНОВНЫЕ НАУЧНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИОННОГО ИССЛЕДОВАНИЯ

Публикации в периодических научных изданиях, рекомендованных ВАК РФ

- 1. Рудный, И. А. Расчет трещиностойкости изгибаемых железобетонных элементов с участками нарушенного сцепления арматуры с бетоном [Текст] / И. А. Рудный // Вестник гражданских инженеров. 2014. №5(46). С. 44—49. (0,5 п.л.)
- 2. Рудный, И. А. Экспериментальные исследования образования и развития трещин в железобетонных балках с участками нарушенного сцепления арматуры с бетоном [Электронный ресурс] / И. А. Рудный // Современные проблемы науки и образования. 2014. №5; URL: www.science-education.ru/119-15164 (0,5 п.л.)
- 3. Рудный, И. А. Расчет образования и развития трещин в центрально растянутых железобетонных элементах с участками нарушенного сцепления арматуры с бетоном [Текст] / И. А. Рудный // Вестник гражданских инженеров. 2014. №6(47). С. 64–69. (0,5 п.л.)

Статьи в других изданиях

- 4. Рудный, И. А. Исследование изгибаемых железобетонных балок по трещиностойкости с частичным или полным нарушением сцепления арматуры с бетоном [Текст] / А. В. Трофимов, И. А. Рудный // Актуальные проблемы строительства и архитектуры: международная научно-практическая конференция студентов, аспирантов, молодых ученых и докторантов: в 2 ч. / СПбГАСУ. СПб., 2012. Ч. 1. С. 56–58. (0,19 п.л. / 0,1 п.л.)
- 5. Рудный, И. А. Экспериментальное исследование параметров сцепления различных классов арматуры с бетоном [Текст] / А. В. Трофимов, И. А. Рудный // Актуальные проблемы строительства и архитектуры: международная научно-практическая конференция студентов,

- аспирантов, молодых ученых и докторантов / СПбГАСУ. СПб., 2013. С. 19—21. (0,19 п.л. / 0,1 п.л.)
- 6. Рудный, И. А. Определение напряженно-деформированного состояния центрально-растянутого железобетонного элемента с участками нарушенного сцепления [Текст] / И. А. Рудный // Доклады 70-й научной конференции профессоров, преподавателей, научных работников, инженеров и аспирантов университета: в 3 ч. / СПбГАСУ. СПб., 2014. Ч. 1. С. 35—40. (0,3 п.л.)
- 7. Рудный, И. А. Расчет трещиностойкости центрально растянутых железобетонных элементов с участками нарушенного сцепления арматуры с бетоном [Текст] / И. А. Рудный // Актуальные проблемы строительства: Международная научно-практическая конференция студентов, аспирантов, молодых ученых и докторантов: в 5 ч. / СПбГАСУ. СПб., 2014. Ч. 1. С. 65–70. (0,3 п.л.)